Spaces:
Runtime error
Runtime error
| import os | |
| import imageio | |
| import numpy as np | |
| from tqdm import tqdm | |
| from typing import Union | |
| from einops import rearrange | |
| from safetensors import safe_open | |
| from transformers import CLIPTextModel | |
| import torch | |
| import torchvision | |
| import torch.distributed as dist | |
| def zero_rank_print(s): | |
| if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) | |
| def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): | |
| videos = rearrange(videos, "b c t h w -> t b c h w") | |
| outputs = [] | |
| for x in videos: | |
| x = torchvision.utils.make_grid(x, nrow=n_rows) | |
| x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| if rescale: | |
| x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
| x = (x * 255).numpy().astype(np.uint8) | |
| outputs.append(x) | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| imageio.mimsave(path, outputs, fps=fps) | |
| # DDIM Inversion | |
| def init_prompt(prompt, pipeline): | |
| uncond_input = pipeline.tokenizer( | |
| [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, | |
| return_tensors="pt" | |
| ) | |
| uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] | |
| text_input = pipeline.tokenizer( | |
| [prompt], | |
| padding="max_length", | |
| max_length=pipeline.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] | |
| context = torch.cat([uncond_embeddings, text_embeddings]) | |
| return context | |
| def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, | |
| sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): | |
| timestep, next_timestep = min( | |
| timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep | |
| alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod | |
| alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] | |
| beta_prod_t = 1 - alpha_prod_t | |
| next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
| next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
| next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
| return next_sample | |
| def get_noise_pred_single(latents, t, context, unet): | |
| noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] | |
| return noise_pred | |
| def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): | |
| context = init_prompt(prompt, pipeline) | |
| uncond_embeddings, cond_embeddings = context.chunk(2) | |
| all_latent = [latent] | |
| latent = latent.clone().detach() | |
| for i in tqdm(range(num_inv_steps)): | |
| t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] | |
| noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) | |
| latent = next_step(noise_pred, t, latent, ddim_scheduler) | |
| all_latent.append(latent) | |
| return all_latent | |
| def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): | |
| ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) | |
| return ddim_latents | |
| def load_weights( | |
| magictime_pipeline, | |
| motion_module_path = "", | |
| dreambooth_model_path = "", | |
| magic_adapter_s_path = "", | |
| magic_adapter_t_path = "", | |
| magic_text_encoder_path = "", | |
| ): | |
| # motion module | |
| unet_state_dict = {} | |
| if motion_module_path != "": | |
| print(f"load motion module from {motion_module_path}") | |
| try: | |
| motion_module_state_dict = torch.load(motion_module_path, map_location="cpu") | |
| if "state_dict" in motion_module_state_dict: | |
| motion_module_state_dict = motion_module_state_dict["state_dict"] | |
| for name, param in motion_module_state_dict.items(): | |
| if "motion_modules." in name: | |
| modified_name = name.removeprefix('module.') if name.startswith('module.') else name | |
| unet_state_dict[modified_name] = param | |
| except Exception as e: | |
| print(f"Error loading motion module: {e}") | |
| try: | |
| missing, unexpected = magictime_pipeline.unet.load_state_dict(unet_state_dict, strict=False) | |
| assert len(unexpected) == 0, f"Unexpected keys in state_dict: {unexpected}" | |
| del unet_state_dict | |
| except Exception as e: | |
| print(f"Error loading state dict into UNet: {e}") | |
| # base model | |
| if dreambooth_model_path != "": | |
| print(f"load dreambooth model from {dreambooth_model_path}") | |
| if dreambooth_model_path.endswith(".safetensors"): | |
| dreambooth_state_dict = {} | |
| with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| dreambooth_state_dict[key] = f.get_tensor(key) | |
| elif dreambooth_model_path.endswith(".ckpt"): | |
| dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu") | |
| # 1. vae | |
| converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, magictime_pipeline.vae.config) | |
| magictime_pipeline.vae.load_state_dict(converted_vae_checkpoint) | |
| # 2. unet | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, magictime_pipeline.unet.config) | |
| magictime_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) | |
| # 3. text_model | |
| magictime_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) | |
| del dreambooth_state_dict | |
| # MagicAdapter and MagicTextEncoder | |
| if magic_adapter_s_path != "": | |
| print(f"load domain lora from {magic_adapter_s_path}") | |
| magic_adapter_s_state_dict = torch.load(magic_adapter_s_path, map_location="cpu") | |
| magictime_pipeline = load_diffusers_lora(magictime_pipeline, magic_adapter_s_state_dict, alpha=1.0) | |
| if magic_adapter_t_path != "" or magic_text_encoder_path != "": | |
| from swift import Swift | |
| if magic_adapter_t_path != "": | |
| print("load lora from swift for Unet") | |
| Swift.from_pretrained(magictime_pipeline.unet, magic_adapter_t_path) | |
| if magic_text_encoder_path != "": | |
| print("load lora from swift for text encoder") | |
| Swift.from_pretrained(magictime_pipeline.text_encoder, magic_text_encoder_path) | |
| return magictime_pipeline | |
| def load_diffusers_lora(pipeline, state_dict, alpha=1.0): | |
| # directly update weight in diffusers model | |
| for key in state_dict: | |
| # only process lora down key | |
| if "up." in key: continue | |
| up_key = key.replace(".down.", ".up.") | |
| model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "") | |
| model_key = model_key.replace("to_out.", "to_out.0.") | |
| layer_infos = model_key.split(".")[:-1] | |
| curr_layer = pipeline.unet | |
| while len(layer_infos) > 0: | |
| temp_name = layer_infos.pop(0) | |
| curr_layer = curr_layer.__getattr__(temp_name) | |
| weight_down = state_dict[key] * 2 | |
| weight_up = state_dict[up_key] * 2 | |
| curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) | |
| return pipeline | |
| def load_diffusers_lora_unet(unet, state_dict, alpha=1.0): | |
| # directly update weight in diffusers model | |
| for key in state_dict: | |
| # only process lora down key | |
| if "up." in key: continue | |
| up_key = key.replace(".down.", ".up.") | |
| model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "") | |
| model_key = model_key.replace("to_out.", "to_out.0.") | |
| layer_infos = model_key.split(".")[:-1] | |
| curr_layer = unet | |
| while len(layer_infos) > 0: | |
| temp_name = layer_infos.pop(0) | |
| curr_layer = curr_layer.__getattr__(temp_name) | |
| weight_down = state_dict[key] * 2 | |
| weight_up = state_dict[up_key] * 2 | |
| curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) | |
| return unet | |
| def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6): | |
| visited = [] | |
| # directly update weight in diffusers model | |
| for key in state_dict: | |
| # it is suggested to print out the key, it usually will be something like below | |
| # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" | |
| # as we have set the alpha beforehand, so just skip | |
| if ".alpha" in key or key in visited: | |
| continue | |
| if "text" in key: | |
| layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") | |
| curr_layer = pipeline.text_encoder | |
| else: | |
| layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") | |
| curr_layer = pipeline.unet | |
| # find the target layer | |
| temp_name = layer_infos.pop(0) | |
| while len(layer_infos) > -1: | |
| try: | |
| curr_layer = curr_layer.__getattr__(temp_name) | |
| if len(layer_infos) > 0: | |
| temp_name = layer_infos.pop(0) | |
| elif len(layer_infos) == 0: | |
| break | |
| except Exception: | |
| if len(temp_name) > 0: | |
| temp_name += "_" + layer_infos.pop(0) | |
| else: | |
| temp_name = layer_infos.pop(0) | |
| pair_keys = [] | |
| if "lora_down" in key: | |
| pair_keys.append(key.replace("lora_down", "lora_up")) | |
| pair_keys.append(key) | |
| else: | |
| pair_keys.append(key) | |
| pair_keys.append(key.replace("lora_up", "lora_down")) | |
| # update weight | |
| if len(state_dict[pair_keys[0]].shape) == 4: | |
| weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) | |
| weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) | |
| curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device) | |
| else: | |
| weight_up = state_dict[pair_keys[0]].to(torch.float32) | |
| weight_down = state_dict[pair_keys[1]].to(torch.float32) | |
| curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) | |
| # update visited list | |
| for item in pair_keys: | |
| visited.append(item) | |
| return pipeline | |
| def shave_segments(path, n_shave_prefix_segments=1): | |
| """ | |
| Removes segments. Positive values shave the first segments, negative shave the last segments. | |
| """ | |
| if n_shave_prefix_segments >= 0: | |
| return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
| else: | |
| return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
| def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item.replace("in_layers.0", "norm1") | |
| new_item = new_item.replace("in_layers.2", "conv1") | |
| new_item = new_item.replace("out_layers.0", "norm2") | |
| new_item = new_item.replace("out_layers.3", "conv2") | |
| new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
| new_item = new_item.replace("skip_connection", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("norm.weight", "group_norm.weight") | |
| new_item = new_item.replace("norm.bias", "group_norm.bias") | |
| new_item = new_item.replace("q.weight", "query.weight") | |
| new_item = new_item.replace("q.bias", "query.bias") | |
| new_item = new_item.replace("k.weight", "key.weight") | |
| new_item = new_item.replace("k.bias", "key.bias") | |
| new_item = new_item.replace("v.weight", "value.weight") | |
| new_item = new_item.replace("v.bias", "value.bias") | |
| new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
| new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def assign_to_checkpoint( | |
| paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
| ): | |
| """ | |
| This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
| attention layers, and takes into account additional replacements that may arise. | |
| Assigns the weights to the new checkpoint. | |
| """ | |
| assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
| # Splits the attention layers into three variables. | |
| if attention_paths_to_split is not None: | |
| for path, path_map in attention_paths_to_split.items(): | |
| old_tensor = old_checkpoint[path] | |
| channels = old_tensor.shape[0] // 3 | |
| target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
| num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
| old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
| query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
| checkpoint[path_map["query"]] = query.reshape(target_shape) | |
| checkpoint[path_map["key"]] = key.reshape(target_shape) | |
| checkpoint[path_map["value"]] = value.reshape(target_shape) | |
| for path in paths: | |
| new_path = path["new"] | |
| # These have already been assigned | |
| if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
| continue | |
| # Global renaming happens here | |
| new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
| new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
| new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
| if additional_replacements is not None: | |
| for replacement in additional_replacements: | |
| new_path = new_path.replace(replacement["old"], replacement["new"]) | |
| # proj_attn.weight has to be converted from conv 1D to linear | |
| if "proj_attn.weight" in new_path: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
| else: | |
| checkpoint[new_path] = old_checkpoint[path["old"]] | |
| def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): | |
| """ | |
| Takes a state dict and a config, and returns a converted checkpoint. | |
| """ | |
| # extract state_dict for UNet | |
| unet_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| unet_key = "model.diffusion_model." | |
| # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
| if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
| print(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
| print( | |
| "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
| " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith("model.diffusion_model"): | |
| flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
| else: | |
| if sum(k.startswith("model_ema") for k in keys) > 100: | |
| print( | |
| "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
| " weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith(unet_key): | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
| new_checkpoint = {} | |
| new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
| new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
| new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
| new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
| if config["class_embed_type"] is None: | |
| # No parameters to port | |
| ... | |
| elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": | |
| new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] | |
| new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] | |
| new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] | |
| new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] | |
| else: | |
| raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") | |
| new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
| new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
| new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
| new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
| new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
| new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
| # Retrieves the keys for the input blocks only | |
| num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
| input_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
| for layer_id in range(num_input_blocks) | |
| } | |
| # Retrieves the keys for the middle blocks only | |
| num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
| middle_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
| for layer_id in range(num_middle_blocks) | |
| } | |
| # Retrieves the keys for the output blocks only | |
| num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
| output_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
| for layer_id in range(num_output_blocks) | |
| } | |
| for i in range(1, num_input_blocks): | |
| block_id = (i - 1) // (config["layers_per_block"] + 1) | |
| layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
| resnets = [ | |
| key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
| ] | |
| attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
| if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.weight" | |
| ) | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.bias" | |
| ) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| resnet_0 = middle_blocks[0] | |
| attentions = middle_blocks[1] | |
| resnet_1 = middle_blocks[2] | |
| resnet_0_paths = renew_resnet_paths(resnet_0) | |
| assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
| resnet_1_paths = renew_resnet_paths(resnet_1) | |
| assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
| attentions_paths = renew_attention_paths(attentions) | |
| meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint( | |
| attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| for i in range(num_output_blocks): | |
| block_id = i // (config["layers_per_block"] + 1) | |
| layer_in_block_id = i % (config["layers_per_block"] + 1) | |
| output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
| output_block_list = {} | |
| for layer in output_block_layers: | |
| layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
| if layer_id in output_block_list: | |
| output_block_list[layer_id].append(layer_name) | |
| else: | |
| output_block_list[layer_id] = [layer_name] | |
| if len(output_block_list) > 1: | |
| resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
| attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
| resnet_0_paths = renew_resnet_paths(resnets) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
| if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
| index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.weight" | |
| ] | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.bias" | |
| ] | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = { | |
| "old": f"output_blocks.{i}.1", | |
| "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| else: | |
| resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
| for path in resnet_0_paths: | |
| old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
| new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
| new_checkpoint[new_path] = unet_state_dict[old_path] | |
| return new_checkpoint | |
| def convert_ldm_clip_checkpoint(checkpoint): | |
| from transformers import CLIPTextModel | |
| text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
| keys = list(checkpoint.keys()) | |
| keys.remove("cond_stage_model.transformer.text_model.embeddings.position_ids") | |
| text_model_dict = {} | |
| for key in keys: | |
| if key.startswith("cond_stage_model.transformer"): | |
| text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
| text_model.load_state_dict(text_model_dict) | |
| return text_model | |
| def convert_ldm_clip_text_model(text_model, checkpoint): | |
| keys = list(checkpoint.keys()) | |
| keys.remove("cond_stage_model.transformer.text_model.embeddings.position_ids") | |
| text_model_dict = {} | |
| for key in keys: | |
| if key.startswith("cond_stage_model.transformer"): | |
| text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
| text_model.load_state_dict(text_model_dict) | |
| return text_model | |
| def conv_attn_to_linear(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| attn_keys = ["query.weight", "key.weight", "value.weight"] | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in attn_keys: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
| elif "proj_attn.weight" in key: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0] | |
| def convert_ldm_vae_checkpoint(checkpoint, config): | |
| # extract state dict for VAE | |
| vae_state_dict = {} | |
| vae_key = "first_stage_model." | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(vae_key): | |
| vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
| new_checkpoint = {} | |
| new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
| new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
| new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
| new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
| new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
| new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
| new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
| new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
| new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
| new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
| new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
| new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
| new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
| new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
| new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
| new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
| # Retrieves the keys for the encoder down blocks only | |
| num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
| down_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
| } | |
| # Retrieves the keys for the decoder up blocks only | |
| num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
| up_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
| } | |
| for i in range(num_down_blocks): | |
| resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
| if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.weight" | |
| ) | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.bias" | |
| ) | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| for i in range(num_up_blocks): | |
| block_id = num_up_blocks - 1 - i | |
| resnets = [ | |
| key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
| ] | |
| if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.weight" | |
| ] | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.bias" | |
| ] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| return new_checkpoint |