Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/guoyww/AnimateDiff/animatediff/models/unet_blocks.py | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import math | |
| from typing import Optional | |
| from einops import rearrange, repeat | |
| from dataclasses import dataclass | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.modeling_utils import ModelMixin | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm | |
| # Attention | |
| class Transformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| unet_use_cross_frame_attention=None, | |
| unet_use_temporal_attention=None, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # Define input layers | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
| # Input | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| video_length=video_length | |
| ) | |
| # Output | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| unet_use_cross_frame_attention = None, | |
| unet_use_temporal_attention = None, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
| self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
| self.unet_use_temporal_attention = unet_use_temporal_attention | |
| # SC-Attn | |
| assert unet_use_cross_frame_attention is not None | |
| self.attn1 = CrossAttention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| # Cross-Attn | |
| if cross_attention_dim is not None: | |
| self.attn2 = CrossAttention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| else: | |
| self.attn2 = None | |
| if cross_attention_dim is not None: | |
| self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| else: | |
| self.norm2 = None | |
| # Feed-forward | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.norm3 = nn.LayerNorm(dim) | |
| # Temp-Attn | |
| assert unet_use_temporal_attention is not None | |
| if unet_use_temporal_attention: | |
| self.attn_temp = CrossAttention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
| self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
| if not is_xformers_available(): | |
| print("Here is how to install it") | |
| raise ModuleNotFoundError( | |
| "Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
| " xformers", | |
| name="xformers", | |
| ) | |
| elif not torch.cuda.is_available(): | |
| raise ValueError( | |
| "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
| " available for GPU " | |
| ) | |
| else: | |
| try: | |
| # Make sure we can run the memory efficient attention | |
| _ = xformers.ops.memory_efficient_attention( | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| ) | |
| except Exception as e: | |
| raise e | |
| self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| if self.attn2 is not None: | |
| self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): | |
| # SparseCausal-Attention | |
| norm_hidden_states = ( | |
| self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
| ) | |
| if self.unet_use_cross_frame_attention: | |
| hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
| else: | |
| hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states | |
| if self.attn2 is not None: | |
| # Cross-Attention | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
| ) | |
| hidden_states = ( | |
| self.attn2( | |
| norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
| ) | |
| + hidden_states | |
| ) | |
| # Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| # Temporal-Attention | |
| if self.unet_use_temporal_attention: | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
| norm_hidden_states = ( | |
| self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
| ) | |
| hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |
| # Resnet | |
| class InflatedConv3d(nn.Conv2d): | |
| def forward(self, x): | |
| video_length = x.shape[2] | |
| x = rearrange(x, "b c f h w -> (b f) c h w") | |
| x = super().forward(x) | |
| x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
| return x | |
| class InflatedGroupNorm(nn.GroupNorm): | |
| def forward(self, x): | |
| video_length = x.shape[2] | |
| x = rearrange(x, "b c f h w -> (b f) c h w") | |
| x = super().forward(x) | |
| x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
| return x | |
| class Upsample3D(nn.Module): | |
| def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_conv_transpose = use_conv_transpose | |
| self.name = name | |
| conv = None | |
| if use_conv_transpose: | |
| raise NotImplementedError | |
| elif use_conv: | |
| self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) | |
| def forward(self, hidden_states, output_size=None): | |
| assert hidden_states.shape[1] == self.channels | |
| if self.use_conv_transpose: | |
| raise NotImplementedError | |
| # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
| dtype = hidden_states.dtype | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(torch.float32) | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| hidden_states = hidden_states.contiguous() | |
| # if `output_size` is passed we force the interpolation output | |
| # size and do not make use of `scale_factor=2` | |
| if output_size is None: | |
| hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") | |
| else: | |
| hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
| # If the input is bfloat16, we cast back to bfloat16 | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(dtype) | |
| # if self.use_conv: | |
| # if self.name == "conv": | |
| # hidden_states = self.conv(hidden_states) | |
| # else: | |
| # hidden_states = self.Conv2d_0(hidden_states) | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class Downsample3D(nn.Module): | |
| def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.padding = padding | |
| stride = 2 | |
| self.name = name | |
| if use_conv: | |
| self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
| else: | |
| raise NotImplementedError | |
| def forward(self, hidden_states): | |
| assert hidden_states.shape[1] == self.channels | |
| if self.use_conv and self.padding == 0: | |
| raise NotImplementedError | |
| assert hidden_states.shape[1] == self.channels | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class ResnetBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| conv_shortcut=False, | |
| dropout=0.0, | |
| temb_channels=512, | |
| groups=32, | |
| groups_out=None, | |
| pre_norm=True, | |
| eps=1e-6, | |
| non_linearity="swish", | |
| time_embedding_norm="default", | |
| output_scale_factor=1.0, | |
| use_in_shortcut=None, | |
| use_inflated_groupnorm=False, | |
| ): | |
| super().__init__() | |
| self.pre_norm = pre_norm | |
| self.pre_norm = True | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.time_embedding_norm = time_embedding_norm | |
| self.output_scale_factor = output_scale_factor | |
| if groups_out is None: | |
| groups_out = groups | |
| assert use_inflated_groupnorm != None | |
| if use_inflated_groupnorm: | |
| self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
| else: | |
| self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
| self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| if temb_channels is not None: | |
| if self.time_embedding_norm == "default": | |
| time_emb_proj_out_channels = out_channels | |
| elif self.time_embedding_norm == "scale_shift": | |
| time_emb_proj_out_channels = out_channels * 2 | |
| else: | |
| raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
| self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) | |
| else: | |
| self.time_emb_proj = None | |
| if use_inflated_groupnorm: | |
| self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
| else: | |
| self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| if non_linearity == "swish": | |
| self.nonlinearity = lambda x: F.silu(x) | |
| elif non_linearity == "mish": | |
| self.nonlinearity = Mish() | |
| elif non_linearity == "silu": | |
| self.nonlinearity = nn.SiLU() | |
| self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
| self.conv_shortcut = None | |
| if self.use_in_shortcut: | |
| self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, input_tensor, temb): | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| if temb is not None: | |
| temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] | |
| if temb is not None and self.time_embedding_norm == "default": | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| if temb is not None and self.time_embedding_norm == "scale_shift": | |
| scale, shift = torch.chunk(temb, 2, dim=1) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
| return output_tensor | |
| class Mish(torch.nn.Module): | |
| def forward(self, hidden_states): | |
| return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |
| # Animatediff_motion_module | |
| def zero_module(module): | |
| # Zero out the parameters of a module and return it. | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| class TemporalTransformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| def get_motion_module( | |
| in_channels, | |
| motion_module_type: str, | |
| motion_module_kwargs: dict | |
| ): | |
| if motion_module_type == "Vanilla": | |
| return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) | |
| else: | |
| raise ValueError | |
| class VanillaTemporalModule(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads = 8, | |
| num_transformer_block = 2, | |
| attention_block_types =( "Temporal_Self", "Temporal_Self" ), | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 24, | |
| temporal_attention_dim_div = 1, | |
| zero_initialize = True, | |
| ): | |
| super().__init__() | |
| self.temporal_transformer = TemporalTransformer3DModel( | |
| in_channels=in_channels, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
| num_layers=num_transformer_block, | |
| attention_block_types=attention_block_types, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| ) | |
| if zero_initialize: | |
| self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
| def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None): | |
| hidden_states = input_tensor | |
| hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) | |
| output = hidden_states | |
| return output | |
| class TemporalTransformer3DModel(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads, | |
| attention_head_dim, | |
| num_layers, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 24, | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| attention_block_types=attention_block_types, | |
| dropout=dropout, | |
| norm_num_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Transformer Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length) | |
| # output | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| return output | |
| class TemporalTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 24, | |
| ): | |
| super().__init__() | |
| attention_blocks = [] | |
| norms = [] | |
| for block_name in attention_block_types: | |
| attention_blocks.append( | |
| VersatileAttention( | |
| attention_mode=block_name.split("_")[0], | |
| cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| ) | |
| ) | |
| norms.append(nn.LayerNorm(dim)) | |
| self.attention_blocks = nn.ModuleList(attention_blocks) | |
| self.norms = nn.ModuleList(norms) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.ff_norm = nn.LayerNorm(dim) | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
| for attention_block, norm in zip(self.attention_blocks, self.norms): | |
| norm_hidden_states = norm(hidden_states) | |
| hidden_states = attention_block( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, | |
| video_length=video_length, | |
| ) + hidden_states | |
| hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
| output = hidden_states | |
| return output | |
| class PositionalEncoding(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout = 0., | |
| max_len = 24 | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| position = torch.arange(max_len).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
| pe = torch.zeros(1, max_len, d_model) | |
| pe[0, :, 0::2] = torch.sin(position * div_term) | |
| pe[0, :, 1::2] = torch.cos(position * div_term) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| x = x + self.pe[:, :x.size(1)] | |
| return self.dropout(x) | |
| class VersatileAttention(CrossAttention): | |
| def __init__( | |
| self, | |
| attention_mode = None, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 24, | |
| *args, **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| assert attention_mode == "Temporal" | |
| self.attention_mode = attention_mode | |
| self.is_cross_attention = kwargs["cross_attention_dim"] is not None | |
| self.pos_encoder = PositionalEncoding( | |
| kwargs["query_dim"], | |
| dropout=0., | |
| max_len=temporal_position_encoding_max_len | |
| ) if (temporal_position_encoding and attention_mode == "Temporal") else None | |
| def extra_repr(self): | |
| return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| if self.attention_mode == "Temporal": | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
| if self.pos_encoder is not None: | |
| hidden_states = self.pos_encoder(hidden_states) | |
| encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states | |
| else: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| if self.attention_mode == "Temporal": | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |
| # UNet_block | |
| def get_down_block( | |
| down_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| temb_channels, | |
| add_downsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| downsample_padding=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| unet_use_cross_frame_attention=False, | |
| unet_use_temporal_attention=False, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
| if down_block_type == "DownBlock3D": | |
| return DownBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") | |
| return CrossAttnDownBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| def get_up_block( | |
| up_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| prev_output_channel, | |
| temb_channels, | |
| add_upsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| unet_use_cross_frame_attention=False, | |
| unet_use_temporal_attention=False, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
| if up_block_type == "UpBlock3D": | |
| return UpBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") | |
| return CrossAttnUpBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| class UNetMidBlock3DCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| output_scale_factor=1.0, | |
| cross_attention_dim=1280, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| upcast_attention=False, | |
| unet_use_cross_frame_attention=False, | |
| unet_use_temporal_attention=False, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ] | |
| attentions = [] | |
| motion_modules = [] | |
| for _ in range(num_layers): | |
| if dual_cross_attention: | |
| raise NotImplementedError | |
| attentions.append( | |
| Transformer3DModel( | |
| attn_num_head_channels, | |
| in_channels // attn_num_head_channels, | |
| in_channels=in_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| ) | |
| ) | |
| motion_modules.append( | |
| get_motion_module( | |
| in_channels=in_channels, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) if use_motion_module else None | |
| ) | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.motion_modules = nn.ModuleList(motion_modules) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class CrossAttnDownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| downsample_padding=1, | |
| add_downsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| unet_use_cross_frame_attention=False, | |
| unet_use_temporal_attention=False, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| motion_modules = [] | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ) | |
| if dual_cross_attention: | |
| raise NotImplementedError | |
| attentions.append( | |
| Transformer3DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| ) | |
| ) | |
| motion_modules.append( | |
| get_motion_module( | |
| in_channels=out_channels, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) if use_motion_module else None | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.motion_modules = nn.ModuleList(motion_modules) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample3D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): | |
| output_states = () | |
| for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), | |
| hidden_states, | |
| encoder_hidden_states, | |
| )[0] | |
| if motion_module is not None: | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| # add motion module | |
| hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class DownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_downsample=True, | |
| downsample_padding=1, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| motion_modules = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ) | |
| motion_modules.append( | |
| get_motion_module( | |
| in_channels=out_channels, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) if use_motion_module else None | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.motion_modules = nn.ModuleList(motion_modules) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample3D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| output_states = () | |
| for resnet, motion_module in zip(self.resnets, self.motion_modules): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| if motion_module is not None: | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| # add motion module | |
| hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class CrossAttnUpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| unet_use_cross_frame_attention=False, | |
| unet_use_temporal_attention=False, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| motion_modules = [] | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ) | |
| if dual_cross_attention: | |
| raise NotImplementedError | |
| attentions.append( | |
| Transformer3DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| ) | |
| ) | |
| motion_modules.append( | |
| get_motion_module( | |
| in_channels=out_channels, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) if use_motion_module else None | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.motion_modules = nn.ModuleList(motion_modules) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states, | |
| res_hidden_states_tuple, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| upsample_size=None, | |
| attention_mask=None, | |
| ): | |
| for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), | |
| hidden_states, | |
| encoder_hidden_states, | |
| )[0] | |
| if motion_module is not None: | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| # add motion module | |
| hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| class UpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| prev_output_channel: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| use_inflated_groupnorm=False, | |
| use_motion_module=None, | |
| motion_module_type=None, | |
| motion_module_kwargs=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| motion_modules = [] | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| ) | |
| ) | |
| motion_modules.append( | |
| get_motion_module( | |
| in_channels=out_channels, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) if use_motion_module else None | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.motion_modules = nn.ModuleList(motion_modules) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,): | |
| for resnet, motion_module in zip(self.resnets, self.motion_modules): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| if motion_module is not None: | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |