Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import cv2 | |
| import torch | |
| import random | |
| import tempfile | |
| import numpy as np | |
| from pathlib import Path | |
| from PIL import Image | |
| from diffusers import ( | |
| ControlNetModel, | |
| StableDiffusionXLControlNetPipeline, | |
| UNet2DConditionModel, | |
| EulerDiscreteScheduler, | |
| ) | |
| #import spaces | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from ip_adapter import IPAdapterXL | |
| from safetensors.torch import load_file | |
| snapshot_download( | |
| repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="." | |
| ) | |
| # global variable | |
| MAX_SEED = np.iinfo(np.int32).max | |
| #device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
| load_device = "cpu" | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| load_device = "cuda" | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| dtype = torch.float16 if str(device).__contains__("cuda") or str(device).__contains__("mps") else torch.float32 | |
| # initialization | |
| base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| image_encoder_path = "sdxl_models/image_encoder" | |
| ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" | |
| controlnet_path = "diffusers/controlnet-canny-sdxl-1.0" | |
| controlnet = ControlNetModel.from_pretrained( | |
| controlnet_path, use_safetensors=False, torch_dtype=torch.float16 | |
| ).to(device) | |
| # load SDXL lightnining | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| base_model_path, | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe.set_progress_bar_config(disable=True) | |
| pipe.scheduler = EulerDiscreteScheduler.from_config( | |
| pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon" | |
| ) | |
| pipe.unet.load_state_dict( | |
| load_file( | |
| hf_hub_download( | |
| "ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors" | |
| ), | |
| device=load_device, | |
| ) | |
| ) | |
| # load ip-adapter | |
| # target_blocks=["block"] for original IP-Adapter | |
| # target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
| # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
| ip_model = IPAdapterXL( | |
| pipe, | |
| image_encoder_path, | |
| ip_ckpt, | |
| device, | |
| target_blocks=["up_blocks.0.attentions.1"], | |
| ) | |
| def resize_img( | |
| input_image, | |
| max_side=1280, | |
| min_side=1024, | |
| size=None, | |
| pad_to_max_side=False, | |
| mode=Image.BILINEAR, | |
| base_pixel_number=64, | |
| ): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio * w), round(ratio * h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = ( | |
| np.array(input_image) | |
| ) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| examples = [ | |
| [ | |
| "./assets/0.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0, | |
| ], | |
| [ | |
| "./assets/1.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0, | |
| ], | |
| [ | |
| "./assets/2.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0, | |
| ], | |
| [ | |
| "./assets/3.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0, | |
| ], | |
| [ | |
| "./assets/2.jpg", | |
| "./assets/yann-lecun.jpg", | |
| "a man, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.6, | |
| ], | |
| ] | |
| def run_for_examples(style_image, source_image, prompt, scale, control_scale): | |
| return create_image( | |
| image_pil=style_image, | |
| input_image=source_image, | |
| prompt=prompt, | |
| n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
| scale=scale, | |
| control_scale=control_scale, | |
| guidance_scale=0.0, | |
| num_inference_steps=2, | |
| seed=42, | |
| target="Load only style blocks", | |
| neg_content_prompt="", | |
| neg_content_scale=0, | |
| ) | |
| #@spaces.GPU(enable_queue=True) | |
| def create_image( | |
| image_pil, | |
| input_image, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| target="Load only style blocks", | |
| neg_content_prompt=None, | |
| neg_content_scale=0, | |
| ): | |
| seed = random.randint(0, MAX_SEED) if seed == -1 else seed | |
| if target == "Load original IP-Adapter": | |
| # target_blocks=["blocks"] for original IP-Adapter | |
| ip_model = IPAdapterXL( | |
| pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"] | |
| ) | |
| elif target == "Load only style blocks": | |
| # target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
| ip_model = IPAdapterXL( | |
| pipe, | |
| image_encoder_path, | |
| ip_ckpt, | |
| device, | |
| target_blocks=["up_blocks.0.attentions.1"], | |
| ) | |
| elif target == "Load style+layout block": | |
| # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
| ip_model = IPAdapterXL( | |
| pipe, | |
| image_encoder_path, | |
| ip_ckpt, | |
| device, | |
| target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"], | |
| ) | |
| if input_image is not None: | |
| input_image = resize_img(input_image, max_side=1024) | |
| cv_input_image = pil_to_cv2(input_image) | |
| detected_map = cv2.Canny(cv_input_image, 50, 200) | |
| canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)) | |
| else: | |
| canny_map = Image.new("RGB", (1024, 1024), color=(255, 255, 255)) | |
| control_scale = 0 | |
| if float(control_scale) == 0: | |
| canny_map = canny_map.resize((1024, 1024)) | |
| if len(neg_content_prompt) > 0 and neg_content_scale != 0: | |
| images = ip_model.generate( | |
| pil_image=image_pil, | |
| prompt=prompt, | |
| negative_prompt=n_prompt, | |
| scale=scale, | |
| guidance_scale=guidance_scale, | |
| num_samples=1, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| image=canny_map, | |
| controlnet_conditioning_scale=float(control_scale), | |
| neg_content_prompt=neg_content_prompt, | |
| neg_content_scale=neg_content_scale, | |
| ) | |
| else: | |
| images = ip_model.generate( | |
| pil_image=image_pil, | |
| prompt=prompt, | |
| negative_prompt=n_prompt, | |
| scale=scale, | |
| guidance_scale=guidance_scale, | |
| num_samples=1, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| image=canny_map, | |
| controlnet_conditioning_scale=float(control_scale), | |
| ) | |
| image = images[0] | |
| with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile: | |
| image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True) | |
| return Path(tmpfile.name) | |
| def pil_to_cv2(image_pil): | |
| image_np = np.array(image_pil) | |
| image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
| return image_cv2 | |
| # Description | |
| title = r""" | |
| <h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1> | |
| """ | |
| description = r""" | |
| <b>Forked from <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</a>.<br> | |
| <b>Model by <a href='https://huggingface.co/ByteDance/SDXL-Lightning' target='_blank'>SDXL Lightning</a> and <a href='https://huggingface.co/h94/IP-Adapter' target='_blank'>IP-Adapter</a>.</b><br> | |
| """ | |
| article = r""" | |
| --- | |
| 📝 **Citation** | |
| <br> | |
| If our work is helpful for your research or applications, please cite us via: | |
| ```bibtex | |
| @article{wang2024instantstyle, | |
| title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
| author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
| journal={arXiv preprint arXiv:2404.02733}, | |
| year={2024} | |
| } | |
| ``` | |
| 📧 **Contact** | |
| <br> | |
| If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. | |
| """ | |
| block = gr.Blocks() | |
| with block: | |
| # description | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Tabs(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_pil = gr.Image(label="Style Image", type="pil") | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| value="a cat, masterpiece, best quality, high quality", | |
| ) | |
| scale = gr.Slider( | |
| minimum=0, maximum=2.0, step=0.01, value=1.0, label="Scale" | |
| ) | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| target = gr.Radio( | |
| [ | |
| "Load only style blocks", | |
| "Load style+layout block", | |
| "Load original IP-Adapter", | |
| ], | |
| value="Load only style blocks", | |
| label="Style mode", | |
| ) | |
| with gr.Column(): | |
| src_image_pil = gr.Image( | |
| label="Source Image (optional)", type="pil" | |
| ) | |
| control_scale = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.5, | |
| label="Controlnet conditioning scale", | |
| ) | |
| n_prompt = gr.Textbox( | |
| label="Neg Prompt", | |
| value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
| ) | |
| neg_content_prompt = gr.Textbox( | |
| label="Neg Content Prompt", value="" | |
| ) | |
| neg_content_scale = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.5, | |
| label="Neg Content Scale", | |
| ) | |
| guidance_scale = gr.Slider( | |
| minimum=0, | |
| maximum=10.0, | |
| step=0.01, | |
| value=0.0, | |
| label="guidance scale", | |
| ) | |
| num_inference_steps = gr.Slider( | |
| minimum=2, | |
| maximum=50.0, | |
| step=1.0, | |
| value=2, | |
| label="num inference steps", | |
| ) | |
| seed = gr.Slider( | |
| minimum=-1, | |
| maximum=MAX_SEED, | |
| value=-1, | |
| step=1, | |
| label="Seed Value", | |
| ) | |
| generate_button = gr.Button("Generate Image") | |
| with gr.Column(): | |
| generated_image = gr.Image(label="Generated Image") | |
| inputs = [ | |
| image_pil, | |
| src_image_pil, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| target, | |
| neg_content_prompt, | |
| neg_content_scale, | |
| ] | |
| outputs = [generated_image] | |
| gr.on( | |
| triggers=[ | |
| prompt.input, | |
| generate_button.click, | |
| guidance_scale.input, | |
| scale.input, | |
| control_scale.input, | |
| seed.input, | |
| ], | |
| fn=create_image, | |
| inputs=inputs, | |
| outputs=outputs, | |
| show_progress="minimal", | |
| show_api=False, | |
| trigger_mode="always_last", | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image_pil, src_image_pil, prompt, scale, control_scale], | |
| fn=run_for_examples, | |
| outputs=[generated_image], | |
| #cache_examples=True, | |
| ) | |
| gr.Markdown(article) | |
| block.queue(api_open=False) | |
| block.launch(show_api=False) | |
 
			
