Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +123 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from io import StringIO
|
| 7 |
+
import sys
|
| 8 |
+
import contextlib
|
| 9 |
+
from sklearn import datasets, metrics, model_selection, preprocessing
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.filterwarnings('ignore')
|
| 12 |
+
|
| 13 |
+
# Capture output helper
|
| 14 |
+
@contextlib.contextmanager
|
| 15 |
+
def capture_output():
|
| 16 |
+
new_out, new_err = StringIO(), StringIO()
|
| 17 |
+
old_out, old_err = sys.stdout, sys.stderr
|
| 18 |
+
try:
|
| 19 |
+
sys.stdout, sys.stderr = new_out, new_err
|
| 20 |
+
yield sys.stdout, sys.stderr
|
| 21 |
+
finally:
|
| 22 |
+
sys.stdout, sys.stderr = old_out, old_err
|
| 23 |
+
|
| 24 |
+
def execute_code(code: str):
|
| 25 |
+
"""
|
| 26 |
+
Execute the provided Python code and return the output
|
| 27 |
+
"""
|
| 28 |
+
# Initialize output components
|
| 29 |
+
output_text = ""
|
| 30 |
+
output_plot = None
|
| 31 |
+
output_df = None
|
| 32 |
+
|
| 33 |
+
# Create a namespace for code execution
|
| 34 |
+
namespace = {
|
| 35 |
+
'np': np,
|
| 36 |
+
'pd': pd,
|
| 37 |
+
'plt': plt,
|
| 38 |
+
'sns': sns,
|
| 39 |
+
'datasets': datasets,
|
| 40 |
+
'metrics': metrics,
|
| 41 |
+
'model_selection': model_selection,
|
| 42 |
+
'preprocessing': preprocessing
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Capture print outputs
|
| 47 |
+
with capture_output() as (out, err):
|
| 48 |
+
# Execute the code
|
| 49 |
+
exec(code, namespace)
|
| 50 |
+
|
| 51 |
+
# Capture print statements
|
| 52 |
+
output_text = out.getvalue()
|
| 53 |
+
if err.getvalue():
|
| 54 |
+
output_text += "\nErrors:\n" + err.getvalue()
|
| 55 |
+
|
| 56 |
+
# Check if there's a plot
|
| 57 |
+
if plt.gcf().axes:
|
| 58 |
+
output_plot = plt.gcf()
|
| 59 |
+
plt.close()
|
| 60 |
+
|
| 61 |
+
# Check for DataFrame output
|
| 62 |
+
for var in namespace:
|
| 63 |
+
if isinstance(namespace[var], pd.DataFrame):
|
| 64 |
+
output_df = namespace[var]
|
| 65 |
+
break
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
output_text = f"Error: {str(e)}"
|
| 69 |
+
|
| 70 |
+
return output_text, output_plot, output_df
|
| 71 |
+
|
| 72 |
+
# Create the Gradio interface
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
gr.Markdown("""
|
| 75 |
+
# Python Data Science Code Executor
|
| 76 |
+
Execute Python code with access to common data science libraries:
|
| 77 |
+
- NumPy (np)
|
| 78 |
+
- Pandas (pd)
|
| 79 |
+
- Matplotlib (plt)
|
| 80 |
+
- Seaborn (sns)
|
| 81 |
+
- Scikit-learn (datasets, metrics, model_selection, preprocessing)
|
| 82 |
+
""")
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column():
|
| 86 |
+
code_input = gr.Code(
|
| 87 |
+
label="Python Code",
|
| 88 |
+
language="python",
|
| 89 |
+
value="""# Example: Load and visualize iris dataset
|
| 90 |
+
from sklearn.datasets import load_iris
|
| 91 |
+
iris = load_iris()
|
| 92 |
+
df = pd.DataFrame(iris.data, columns=iris.feature_names)
|
| 93 |
+
df['target'] = iris.target
|
| 94 |
+
|
| 95 |
+
# Create a scatter plot
|
| 96 |
+
plt.figure(figsize=(10, 6))
|
| 97 |
+
plt.scatter(df['sepal length (cm)'], df['sepal width (cm)'], c=df['target'])
|
| 98 |
+
plt.xlabel('Sepal Length (cm)')
|
| 99 |
+
plt.ylabel('Sepal Width (cm)')
|
| 100 |
+
plt.title('Iris Dataset - Sepal Length vs Width')
|
| 101 |
+
|
| 102 |
+
# Print first few rows
|
| 103 |
+
print("First 5 rows of the dataset:")
|
| 104 |
+
print(df.head())
|
| 105 |
+
"""
|
| 106 |
+
)
|
| 107 |
+
run_button = gr.Button("Execute Code", variant="primary")
|
| 108 |
+
|
| 109 |
+
with gr.Column():
|
| 110 |
+
output_text = gr.Textbox(label="Output", lines=5)
|
| 111 |
+
output_plot = gr.Plot(label="Plot Output")
|
| 112 |
+
output_df = gr.Dataframe(label="DataFrame Output")
|
| 113 |
+
|
| 114 |
+
# Handle code execution
|
| 115 |
+
run_button.click(
|
| 116 |
+
fn=execute_code,
|
| 117 |
+
inputs=[code_input],
|
| 118 |
+
outputs=[output_text, output_plot, output_df]
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Launch the app
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
numpy>=1.24.0
|
| 3 |
+
pandas>=2.0.0
|
| 4 |
+
matplotlib>=3.7.0
|
| 5 |
+
seaborn>=0.12.0
|
| 6 |
+
scikit-learn>=1.2.0
|