Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,257 +1,216 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 4 |
-
#from transformers import pipeline
|
| 5 |
import os
|
| 6 |
from numpy import exp
|
| 7 |
-
import pandas as
|
| 8 |
from PIL import Image
|
| 9 |
import urllib.request
|
| 10 |
import uuid
|
| 11 |
-
uid=uuid.uuid4()
|
| 12 |
|
| 13 |
-
models
|
| 14 |
-
|
| 15 |
"umm-maybe/AI-image-detector",
|
| 16 |
"Organika/sdxl-detector",
|
| 17 |
-
|
| 18 |
]
|
| 19 |
|
| 20 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
| 21 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
| 22 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
| 23 |
-
|
| 24 |
|
| 25 |
-
fin_sum=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def image_classifier0(image):
|
| 27 |
-
labels = ["AI","Real"]
|
| 28 |
outputs = pipe0(image)
|
| 29 |
results = {}
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
results[labels[idx]] = outputs[idx]['score']
|
| 33 |
-
#print (result_test)
|
| 34 |
-
#for result in outputs:
|
| 35 |
-
# results[result['label']] = result['score']
|
| 36 |
-
#print (results)
|
| 37 |
fin_sum.append(results)
|
| 38 |
return results
|
|
|
|
| 39 |
def image_classifier1(image):
|
| 40 |
-
labels = ["AI","Real"]
|
| 41 |
outputs = pipe1(image)
|
| 42 |
results = {}
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
results[labels[idx]] = outputs[idx]['score']
|
| 46 |
-
#print (result_test)
|
| 47 |
-
#for result in outputs:
|
| 48 |
-
# results[result['label']] = result['score']
|
| 49 |
-
#print (results)
|
| 50 |
fin_sum.append(results)
|
| 51 |
return results
|
|
|
|
| 52 |
def image_classifier2(image):
|
| 53 |
-
labels = ["AI","Real"]
|
| 54 |
outputs = pipe2(image)
|
| 55 |
results = {}
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
results[labels[idx]] = outputs[idx]['score']
|
| 59 |
-
#print (result_test)
|
| 60 |
-
#for result in outputs:
|
| 61 |
-
# results[result['label']] = result['score']
|
| 62 |
-
#print (results)
|
| 63 |
fin_sum.append(results)
|
| 64 |
return results
|
| 65 |
|
| 66 |
-
def
|
| 67 |
-
e = exp(vector)
|
| 68 |
-
return e / e.sum()
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def aiornot0(image):
|
| 73 |
labels = ["AI", "Real"]
|
| 74 |
-
mod=models[0]
|
| 75 |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
| 76 |
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
| 77 |
input = feature_extractor0(image, return_tensors="pt")
|
| 78 |
with torch.no_grad():
|
| 79 |
outputs = model0(**input)
|
| 80 |
logits = outputs.logits
|
| 81 |
-
probability = softmax(logits)
|
| 82 |
px = pd.DataFrame(probability.numpy())
|
| 83 |
prediction = logits.argmax(-1).item()
|
| 84 |
label = labels[prediction]
|
|
|
|
| 85 |
html_out = f"""
|
| 86 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
results = {
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
fin_sum.append(results)
|
| 96 |
-
return gr.HTML.update(html_out),results
|
| 97 |
-
|
|
|
|
| 98 |
labels = ["AI", "Real"]
|
| 99 |
-
mod=models[1]
|
| 100 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
| 101 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
| 102 |
input = feature_extractor1(image, return_tensors="pt")
|
| 103 |
with torch.no_grad():
|
| 104 |
outputs = model1(**input)
|
| 105 |
logits = outputs.logits
|
| 106 |
-
probability = softmax(logits)
|
| 107 |
px = pd.DataFrame(probability.numpy())
|
| 108 |
prediction = logits.argmax(-1).item()
|
| 109 |
label = labels[prediction]
|
|
|
|
| 110 |
html_out = f"""
|
| 111 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
results = {
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
fin_sum.append(results)
|
| 121 |
-
return gr.HTML.update(html_out),results
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
| 126 |
-
#feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 127 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
| 128 |
input = feature_extractor2(image, return_tensors="pt")
|
| 129 |
with torch.no_grad():
|
| 130 |
outputs = model2(**input)
|
| 131 |
logits = outputs.logits
|
| 132 |
-
probability = softmax(logits)
|
| 133 |
px = pd.DataFrame(probability.numpy())
|
| 134 |
prediction = logits.argmax(-1).item()
|
| 135 |
label = labels[prediction]
|
|
|
|
| 136 |
html_out = f"""
|
| 137 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
#results[labels['label']] = result['score']
|
| 147 |
fin_sum.append(results)
|
| 148 |
-
|
| 149 |
-
return gr.HTML.update(html_out),results
|
| 150 |
|
| 151 |
def load_url(url):
|
| 152 |
try:
|
| 153 |
-
urllib.request.urlretrieve(
|
| 154 |
-
f'{url}',
|
| 155 |
-
f"{uid}tmp_im.png")
|
| 156 |
image = Image.open(f"{uid}tmp_im.png")
|
| 157 |
mes = "Image Loaded"
|
| 158 |
except Exception as e:
|
| 159 |
-
image=None
|
| 160 |
-
mes=f"Image not Found<br>Error: {e}"
|
| 161 |
-
return image,mes
|
| 162 |
|
| 163 |
def tot_prob():
|
| 164 |
try:
|
| 165 |
-
fin_out =
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
"
|
| 170 |
-
"AI":f"{fin_sub}"
|
| 171 |
}
|
| 172 |
-
#fin_sum.clear()
|
| 173 |
-
#print (fin_out)
|
| 174 |
return out
|
| 175 |
except Exception as e:
|
| 176 |
-
|
| 177 |
-
print (e)
|
| 178 |
return None
|
|
|
|
| 179 |
def fin_clear():
|
| 180 |
fin_sum.clear()
|
| 181 |
return None
|
| 182 |
|
| 183 |
def upd(image):
|
| 184 |
-
print (image)
|
| 185 |
rand_im = uuid.uuid4()
|
| 186 |
image.save(f"{rand_im}-vid_tmp_proc.png")
|
| 187 |
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
|
|
|
|
| 188 |
|
| 189 |
-
#image.save(f"{rand_im}-vid_tmp_proc.png")
|
| 190 |
-
#out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
|
| 191 |
-
#out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
|
| 192 |
-
#out_url = f"{rand_im}-vid_tmp_proc.png"
|
| 193 |
-
return out
|
| 194 |
-
|
| 195 |
-
|
| 196 |
with gr.Blocks() as app:
|
| 197 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
| 198 |
with gr.Column():
|
| 199 |
inp = gr.Image(type='pil')
|
| 200 |
-
in_url=gr.Textbox(label="Image URL")
|
| 201 |
with gr.Row():
|
| 202 |
-
load_btn=gr.Button("Load URL")
|
| 203 |
btn = gr.Button("Detect AI")
|
| 204 |
mes = gr.HTML("""""")
|
| 205 |
-
|
|
|
|
| 206 |
with gr.Row():
|
| 207 |
-
fin=gr.Label(label="Final Probability")
|
| 208 |
with gr.Row():
|
|
|
|
| 209 |
with gr.Box():
|
| 210 |
-
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
| 211 |
nun0 = gr.HTML("""""")
|
| 212 |
with gr.Box():
|
| 213 |
-
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
| 214 |
nun1 = gr.HTML("""""")
|
| 215 |
with gr.Box():
|
| 216 |
-
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
| 217 |
nun2 = gr.HTML("""""")
|
| 218 |
-
|
| 219 |
with gr.Row():
|
| 220 |
with gr.Box():
|
| 221 |
-
n_out0=gr.Label(label="Output")
|
| 222 |
outp0 = gr.HTML("""""")
|
| 223 |
with gr.Box():
|
| 224 |
-
n_out1=gr.Label(label="Output")
|
| 225 |
outp1 = gr.HTML("""""")
|
| 226 |
with gr.Box():
|
| 227 |
-
n_out2=gr.Label(label="Output")
|
| 228 |
-
outp2 = gr.HTML("""""")
|
| 229 |
-
with gr.Row():
|
| 230 |
-
with gr.Box():
|
| 231 |
-
n_out3=gr.Label(label="Output")
|
| 232 |
-
outp3 = gr.HTML("""""")
|
| 233 |
-
with gr.Box():
|
| 234 |
-
n_out4=gr.Label(label="Output")
|
| 235 |
-
outp4 = gr.HTML("""""")
|
| 236 |
-
with gr.Box():
|
| 237 |
-
n_out5=gr.Label(label="Output")
|
| 238 |
-
outp5 = gr.HTML("""""")
|
| 239 |
-
hid_box=gr.Textbox(visible=False)
|
| 240 |
-
hid_im = gr.Image(type="pil",visible=False)
|
| 241 |
-
def echo(inp):
|
| 242 |
-
return inp
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
btn.click(
|
| 250 |
-
|
| 251 |
-
btn.click(
|
| 252 |
-
|
| 253 |
-
btn.click(
|
| 254 |
-
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
|
| 255 |
-
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
|
| 256 |
|
| 257 |
-
app.launch(show_api=False,max_threads=24)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
|
|
|
| 4 |
import os
|
| 5 |
from numpy import exp
|
| 6 |
+
import pandas as pd
|
| 7 |
from PIL import Image
|
| 8 |
import urllib.request
|
| 9 |
import uuid
|
| 10 |
+
uid = uuid.uuid4()
|
| 11 |
|
| 12 |
+
# Reordered models as requested
|
| 13 |
+
models = [
|
| 14 |
"umm-maybe/AI-image-detector",
|
| 15 |
"Organika/sdxl-detector",
|
| 16 |
+
"cmckinle/sdxl-flux-detector",
|
| 17 |
]
|
| 18 |
|
| 19 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
| 20 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
| 21 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
|
|
|
| 22 |
|
| 23 |
+
fin_sum = []
|
| 24 |
+
|
| 25 |
+
def softmax(vector):
|
| 26 |
+
e = exp(vector - vector.max()) # for numerical stability
|
| 27 |
+
return e / e.sum()
|
| 28 |
+
|
| 29 |
def image_classifier0(image):
|
| 30 |
+
labels = ["AI", "Real"]
|
| 31 |
outputs = pipe0(image)
|
| 32 |
results = {}
|
| 33 |
+
for idx, result in enumerate(outputs):
|
| 34 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
fin_sum.append(results)
|
| 36 |
return results
|
| 37 |
+
|
| 38 |
def image_classifier1(image):
|
| 39 |
+
labels = ["AI", "Real"]
|
| 40 |
outputs = pipe1(image)
|
| 41 |
results = {}
|
| 42 |
+
for idx, result in enumerate(outputs):
|
| 43 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
fin_sum.append(results)
|
| 45 |
return results
|
| 46 |
+
|
| 47 |
def image_classifier2(image):
|
| 48 |
+
labels = ["AI", "Real"]
|
| 49 |
outputs = pipe2(image)
|
| 50 |
results = {}
|
| 51 |
+
for idx, result in enumerate(outputs):
|
| 52 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
fin_sum.append(results)
|
| 54 |
return results
|
| 55 |
|
| 56 |
+
def aiornot0(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
labels = ["AI", "Real"]
|
| 58 |
+
mod = models[0]
|
| 59 |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
| 60 |
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
| 61 |
input = feature_extractor0(image, return_tensors="pt")
|
| 62 |
with torch.no_grad():
|
| 63 |
outputs = model0(**input)
|
| 64 |
logits = outputs.logits
|
| 65 |
+
probability = softmax(logits) # Apply softmax on logits
|
| 66 |
px = pd.DataFrame(probability.numpy())
|
| 67 |
prediction = logits.argmax(-1).item()
|
| 68 |
label = labels[prediction]
|
| 69 |
+
|
| 70 |
html_out = f"""
|
| 71 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 72 |
+
Probabilities:<br>
|
| 73 |
+
Real: {float(px[1][0])}<br>
|
| 74 |
+
AI: {float(px[0][0])}"""
|
| 75 |
+
|
| 76 |
+
results = {
|
| 77 |
+
"Real": float(px[1][0]),
|
| 78 |
+
"AI": float(px[0][0])
|
| 79 |
+
}
|
| 80 |
fin_sum.append(results)
|
| 81 |
+
return gr.HTML.update(html_out), results
|
| 82 |
+
|
| 83 |
+
def aiornot1(image):
|
| 84 |
labels = ["AI", "Real"]
|
| 85 |
+
mod = models[1]
|
| 86 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
| 87 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
| 88 |
input = feature_extractor1(image, return_tensors="pt")
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model1(**input)
|
| 91 |
logits = outputs.logits
|
| 92 |
+
probability = softmax(logits) # Apply softmax on logits
|
| 93 |
px = pd.DataFrame(probability.numpy())
|
| 94 |
prediction = logits.argmax(-1).item()
|
| 95 |
label = labels[prediction]
|
| 96 |
+
|
| 97 |
html_out = f"""
|
| 98 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 99 |
+
Probabilities:<br>
|
| 100 |
+
Real: {float(px[1][0])}<br>
|
| 101 |
+
AI: {float(px[0][0])}"""
|
| 102 |
+
|
| 103 |
+
results = {
|
| 104 |
+
"Real": float(px[1][0]),
|
| 105 |
+
"AI": float(px[0][0])
|
| 106 |
+
}
|
| 107 |
fin_sum.append(results)
|
| 108 |
+
return gr.HTML.update(html_out), results
|
| 109 |
+
|
| 110 |
+
def aiornot2(image):
|
| 111 |
+
labels = ["AI", "Real"]
|
| 112 |
+
mod = models[2]
|
| 113 |
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
|
|
|
| 114 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
| 115 |
input = feature_extractor2(image, return_tensors="pt")
|
| 116 |
with torch.no_grad():
|
| 117 |
outputs = model2(**input)
|
| 118 |
logits = outputs.logits
|
| 119 |
+
probability = softmax(logits) # Apply softmax on logits
|
| 120 |
px = pd.DataFrame(probability.numpy())
|
| 121 |
prediction = logits.argmax(-1).item()
|
| 122 |
label = labels[prediction]
|
| 123 |
+
|
| 124 |
html_out = f"""
|
| 125 |
<h1>This image is likely: {label}</h1><br><h3>
|
| 126 |
+
Probabilities:<br>
|
| 127 |
+
Real: {float(px[1][0])}<br>
|
| 128 |
+
AI: {float(px[0][0])}"""
|
| 129 |
+
|
| 130 |
+
results = {
|
| 131 |
+
"Real": float(px[1][0]),
|
| 132 |
+
"AI": float(px[0][0])
|
| 133 |
+
}
|
|
|
|
| 134 |
fin_sum.append(results)
|
| 135 |
+
return gr.HTML.update(html_out), results
|
|
|
|
| 136 |
|
| 137 |
def load_url(url):
|
| 138 |
try:
|
| 139 |
+
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
|
|
|
|
|
|
|
| 140 |
image = Image.open(f"{uid}tmp_im.png")
|
| 141 |
mes = "Image Loaded"
|
| 142 |
except Exception as e:
|
| 143 |
+
image = None
|
| 144 |
+
mes = f"Image not Found<br>Error: {e}"
|
| 145 |
+
return image, mes
|
| 146 |
|
| 147 |
def tot_prob():
|
| 148 |
try:
|
| 149 |
+
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
|
| 150 |
+
fin_sub = 1 - fin_out
|
| 151 |
+
out = {
|
| 152 |
+
"Real": f"{fin_out}",
|
| 153 |
+
"AI": f"{fin_sub}"
|
|
|
|
| 154 |
}
|
|
|
|
|
|
|
| 155 |
return out
|
| 156 |
except Exception as e:
|
| 157 |
+
print(e)
|
|
|
|
| 158 |
return None
|
| 159 |
+
|
| 160 |
def fin_clear():
|
| 161 |
fin_sum.clear()
|
| 162 |
return None
|
| 163 |
|
| 164 |
def upd(image):
|
|
|
|
| 165 |
rand_im = uuid.uuid4()
|
| 166 |
image.save(f"{rand_im}-vid_tmp_proc.png")
|
| 167 |
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
|
| 168 |
+
return out
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
with gr.Blocks() as app:
|
| 171 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
| 172 |
with gr.Column():
|
| 173 |
inp = gr.Image(type='pil')
|
| 174 |
+
in_url = gr.Textbox(label="Image URL")
|
| 175 |
with gr.Row():
|
| 176 |
+
load_btn = gr.Button("Load URL")
|
| 177 |
btn = gr.Button("Detect AI")
|
| 178 |
mes = gr.HTML("""""")
|
| 179 |
+
|
| 180 |
+
with gr.Group():
|
| 181 |
with gr.Row():
|
| 182 |
+
fin = gr.Label(label="Final Probability", visible=False)
|
| 183 |
with gr.Row():
|
| 184 |
+
# Updated model names
|
| 185 |
with gr.Box():
|
| 186 |
+
lab0 = gr.HTML(f"""<b>Testing on Original Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
| 187 |
nun0 = gr.HTML("""""")
|
| 188 |
with gr.Box():
|
| 189 |
+
lab1 = gr.HTML(f"""<b>Testing on SDXL Fine Tuned Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
| 190 |
nun1 = gr.HTML("""""")
|
| 191 |
with gr.Box():
|
| 192 |
+
lab2 = gr.HTML(f"""<b>Testing on SDXL and Flux Fine Tuned Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
| 193 |
nun2 = gr.HTML("""""")
|
|
|
|
| 194 |
with gr.Row():
|
| 195 |
with gr.Box():
|
| 196 |
+
n_out0 = gr.Label(label="Output")
|
| 197 |
outp0 = gr.HTML("""""")
|
| 198 |
with gr.Box():
|
| 199 |
+
n_out1 = gr.Label(label="Output")
|
| 200 |
outp1 = gr.HTML("""""")
|
| 201 |
with gr.Box():
|
| 202 |
+
n_out2 = gr.Label(label="Output")
|
| 203 |
+
outp2 = gr.HTML("""""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
btn.click(fin_clear, None, fin, show_progress=False)
|
| 206 |
+
load_btn.click(load_url, in_url, [inp, mes])
|
| 207 |
+
|
| 208 |
+
btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False)
|
| 209 |
+
btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False)
|
| 210 |
+
btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False)
|
| 211 |
+
|
| 212 |
+
btn.click(image_classifier0, [inp], [n_out0]).then(tot_prob, None, fin, show_progress=False)
|
| 213 |
+
btn.click(image_classifier1, [inp], [n_out1]).then(tot_prob, None, fin, show_progress=False)
|
| 214 |
+
btn.click(image_classifier2, [inp], [n_out2]).then(tot_prob, None, fin, show_progress=False)
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
app.launch(show_api=False, max_threads=24)
|