Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,52 +4,65 @@ from transformers import AutoFeatureExtractor, AutoModelForImageClassification,
|
|
| 4 |
|
| 5 |
models=[
|
| 6 |
"Nahrawy/AIorNot",
|
| 7 |
-
"RishiDarkDevil/ai-image-det-resnet152",
|
| 8 |
"arnolfokam/ai-generated-image-detector",
|
| 9 |
"umm-maybe/AI-image-detector",
|
| 10 |
]
|
| 11 |
-
#pipe = pipeline("image-classification", "umm-maybe/AI-image-detector")
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
outputs = pipe(image)
|
| 15 |
-
results = {}
|
| 16 |
-
for result in outputs:
|
| 17 |
-
results[result['label']] = result['score']
|
| 18 |
-
return results
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", title=title, description=description)
|
| 23 |
-
#demo.launch(show_api=False)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def aiornot(image,mod_choose):
|
| 28 |
labels = ["Real", "AI"]
|
| 29 |
-
|
| 30 |
-
#feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 31 |
-
mod=models[int(mod_choose)]
|
| 32 |
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
|
| 33 |
model = AutoModelForImageClassification.from_pretrained(mod)
|
| 34 |
-
|
| 35 |
input = feature_extractor(image, return_tensors="pt")
|
| 36 |
with torch.no_grad():
|
| 37 |
outputs = model(**input)
|
| 38 |
-
print(outputs)
|
| 39 |
-
print(dir(outputs))
|
| 40 |
logits = outputs.logits
|
| 41 |
print (logits)
|
| 42 |
prediction = logits.argmax(-1).item()
|
| 43 |
-
print(prediction)
|
| 44 |
label = labels[prediction]
|
| 45 |
return label
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
with gr.Blocks() as app:
|
| 48 |
with gr.Row():
|
| 49 |
with gr.Column():
|
| 50 |
inp = gr.Image()
|
| 51 |
mod_choose=gr.Number(value=0)
|
| 52 |
btn = gr.Button()
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
app.launch()
|
|
|
|
| 4 |
|
| 5 |
models=[
|
| 6 |
"Nahrawy/AIorNot",
|
|
|
|
| 7 |
"arnolfokam/ai-generated-image-detector",
|
| 8 |
"umm-maybe/AI-image-detector",
|
| 9 |
]
|
|
|
|
| 10 |
|
| 11 |
+
def aiornot0(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
labels = ["Real", "AI"]
|
| 13 |
+
mod=models[0]
|
|
|
|
|
|
|
| 14 |
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
|
| 15 |
model = AutoModelForImageClassification.from_pretrained(mod)
|
|
|
|
| 16 |
input = feature_extractor(image, return_tensors="pt")
|
| 17 |
with torch.no_grad():
|
| 18 |
outputs = model(**input)
|
| 19 |
+
print (outputs)
|
|
|
|
| 20 |
logits = outputs.logits
|
| 21 |
print (logits)
|
| 22 |
prediction = logits.argmax(-1).item()
|
|
|
|
| 23 |
label = labels[prediction]
|
| 24 |
return label
|
| 25 |
+
def aiornot1(image):
|
| 26 |
+
labels = ["Real", "AI"]
|
| 27 |
+
mod=models[1]
|
| 28 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
|
| 29 |
+
model = AutoModelForImageClassification.from_pretrained(mod)
|
| 30 |
+
input = feature_extractor(image, return_tensors="pt")
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = model(**input)
|
| 33 |
+
print (outputs)
|
| 34 |
+
logits = outputs.logits
|
| 35 |
+
print (logits)
|
| 36 |
+
prediction = logits.argmax(-1).item()
|
| 37 |
+
label = labels[prediction]
|
| 38 |
+
return label
|
| 39 |
+
def aiornot2(image):
|
| 40 |
+
labels = ["Real", "AI"]
|
| 41 |
+
mod=models[2]
|
| 42 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
|
| 43 |
+
model = AutoModelForImageClassification.from_pretrained(mod)
|
| 44 |
+
input = feature_extractor(image, return_tensors="pt")
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
outputs = model(**input)
|
| 47 |
+
print (outputs)
|
| 48 |
+
logits = outputs.logits
|
| 49 |
+
print (logits)
|
| 50 |
+
prediction = logits.argmax(-1).item()
|
| 51 |
+
label = labels[prediction]
|
| 52 |
+
return label
|
| 53 |
with gr.Blocks() as app:
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column():
|
| 56 |
inp = gr.Image()
|
| 57 |
mod_choose=gr.Number(value=0)
|
| 58 |
btn = gr.Button()
|
| 59 |
+
|
| 60 |
+
with gr.Column():
|
| 61 |
+
outp0 = gr.Textbox()
|
| 62 |
+
outp1 = gr.Textbox()
|
| 63 |
+
outp2 = gr.Textbox()
|
| 64 |
+
btn.click(aiornot0,[inp],outp0)
|
| 65 |
+
btn.click(aiornot1,[inp],outp1)
|
| 66 |
+
btn.click(aiornot2,[inp],outp2)
|
| 67 |
+
|
| 68 |
app.launch()
|