Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline | |
| #from transformers import pipeline | |
| import os | |
| from numpy import exp | |
| import pandas as pd | |
| from PIL import Image | |
| import urllib.request | |
| import uuid | |
| uid=uuid.uuid4() | |
| models=[ | |
| "Nahrawy/AIorNot", | |
| "umm-maybe/AI-image-detector", | |
| "Organika/sdxl-detector", | |
| #"arnolfokam/ai-generated-image-detector", | |
| ] | |
| pipe0 = pipeline("image-classification", f"{models[0]}") | |
| pipe1 = pipeline("image-classification", f"{models[1]}") | |
| pipe2 = pipeline("image-classification", f"{models[2]}") | |
| fin_sum=[] | |
| def image_classifier0(image): | |
| labels = ["AI","Real"] | |
| outputs = pipe0(image) | |
| results = {} | |
| result_test={} | |
| for idx,result in enumerate(outputs): | |
| results[labels[idx]] = outputs[idx]['score'] | |
| #print (result_test) | |
| #for result in outputs: | |
| # results[result['label']] = result['score'] | |
| #print (results) | |
| fin_sum.append(results) | |
| return results | |
| def image_classifier1(image): | |
| labels = ["AI","Real"] | |
| outputs = pipe1(image) | |
| results = {} | |
| result_test={} | |
| for idx,result in enumerate(outputs): | |
| results[labels[idx]] = outputs[idx]['score'] | |
| #print (result_test) | |
| #for result in outputs: | |
| # results[result['label']] = result['score'] | |
| #print (results) | |
| fin_sum.append(results) | |
| return results | |
| def image_classifier2(image): | |
| labels = ["AI","Real"] | |
| outputs = pipe2(image) | |
| results = {} | |
| result_test={} | |
| for idx,result in enumerate(outputs): | |
| results[labels[idx]] = outputs[idx]['score'] | |
| #print (result_test) | |
| #for result in outputs: | |
| # results[result['label']] = result['score'] | |
| #print (results) | |
| fin_sum.append(results) | |
| return results | |
| def softmax(vector): | |
| e = exp(vector) | |
| return e / e.sum() | |
| def aiornot0(image): | |
| labels = ["AI", "Real"] | |
| mod=models[0] | |
| feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) | |
| model0 = AutoModelForImageClassification.from_pretrained(mod) | |
| input = feature_extractor0(image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model0(**input) | |
| logits = outputs.logits | |
| probability = softmax(logits) | |
| px = pd.DataFrame(probability.numpy()) | |
| prediction = logits.argmax(-1).item() | |
| label = labels[prediction] | |
| html_out = f""" | |
| <h1>This image is likely: {label}</h1><br><h3> | |
| Probabilites:<br> | |
| Real: {px[1][0]}<br> | |
| AI: {px[0][0]}""" | |
| results = {} | |
| for idx,result in enumerate(px): | |
| results[labels[idx]] = px[idx][0] | |
| #results[labels['label']] = result['score'] | |
| fin_sum.append(results) | |
| return gr.HTML.update(html_out),results | |
| def aiornot1(image): | |
| labels = ["AI", "Real"] | |
| mod=models[1] | |
| feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) | |
| model1 = AutoModelForImageClassification.from_pretrained(mod) | |
| input = feature_extractor1(image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model1(**input) | |
| logits = outputs.logits | |
| probability = softmax(logits) | |
| px = pd.DataFrame(probability.numpy()) | |
| prediction = logits.argmax(-1).item() | |
| label = labels[prediction] | |
| html_out = f""" | |
| <h1>This image is likely: {label}</h1><br><h3> | |
| Probabilites:<br> | |
| Real: {px[1][0]}<br> | |
| AI: {px[0][0]}""" | |
| results = {} | |
| for idx,result in enumerate(px): | |
| results[labels[idx]] = px[idx][0] | |
| #results[labels['label']] = result['score'] | |
| fin_sum.append(results) | |
| return gr.HTML.update(html_out),results | |
| def aiornot2(image): | |
| labels = ["Real", "AI"] | |
| mod=models[2] | |
| feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") | |
| model2 = AutoModelForImageClassification.from_pretrained(mod) | |
| input = feature_extractor2(image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model2(**input) | |
| logits = outputs.logits | |
| probability = softmax(logits) | |
| px = pd.DataFrame(probability.numpy()) | |
| prediction = logits.argmax(-1).item() | |
| label = labels[prediction] | |
| html_out = f""" | |
| <h1>This image is likely: {label}</h1><br><h3> | |
| Probabilites:<br> | |
| Real: {px[0][0]}<br> | |
| AI: {px[1][0]}""" | |
| results = {} | |
| for idx,result in enumerate(px): | |
| results[labels[idx]] = px[idx][0] | |
| #results[labels['label']] = result['score'] | |
| fin_sum.append(results) | |
| return gr.HTML.update(html_out),results | |
| def load_url(url): | |
| try: | |
| urllib.request.urlretrieve( | |
| f'{url}', | |
| f"{uid}tmp_im.png") | |
| image = Image.open(f"{uid}tmp_im.png") | |
| mes = "Image Loaded" | |
| except Exception as e: | |
| image=None | |
| mes=f"Image not Found<br>Error: {e}" | |
| return image,mes | |
| def tot_prob(): | |
| try: | |
| fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"] | |
| fin_out = fin_out/6 | |
| fin_sub = 1-fin_out | |
| out={ | |
| "Real":f"{fin_out}", | |
| "AI":f"{fin_sub}" | |
| } | |
| #fin_sum.clear() | |
| #print (fin_out) | |
| return out | |
| except Exception as e: | |
| pass | |
| print (e) | |
| return None | |
| def fin_clear(): | |
| fin_sum.clear() | |
| return None | |
| def upd(image): | |
| print (image) | |
| rand_im = uuid.uuid4() | |
| image.save(f"{rand_im}-vid_tmp_proc.png") | |
| out = Image.open(f"{rand_im}-vid_tmp_proc.png") | |
| #image.save(f"{rand_im}-vid_tmp_proc.png") | |
| #out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png") | |
| #out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}' | |
| #out_url = f"{rand_im}-vid_tmp_proc.png" | |
| return out | |
| with gr.Blocks() as app: | |
| gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""") | |
| with gr.Column(): | |
| inp = gr.Image(type='pil') | |
| in_url=gr.Textbox(label="Image URL") | |
| with gr.Row(): | |
| load_btn=gr.Button("Load URL") | |
| btn = gr.Button("Detect AI") | |
| mes = gr.HTML("""""") | |
| with gr.Group(): | |
| with gr.Row(): | |
| fin=gr.Label(label="Final Probability") | |
| with gr.Row(): | |
| with gr.Box(): | |
| lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""") | |
| nun0 = gr.HTML("""""") | |
| with gr.Box(): | |
| lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""") | |
| nun1 = gr.HTML("""""") | |
| with gr.Box(): | |
| lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""") | |
| nun2 = gr.HTML("""""") | |
| with gr.Row(): | |
| with gr.Box(): | |
| n_out0=gr.Label(label="Output") | |
| outp0 = gr.HTML("""""") | |
| with gr.Box(): | |
| n_out1=gr.Label(label="Output") | |
| outp1 = gr.HTML("""""") | |
| with gr.Box(): | |
| n_out2=gr.Label(label="Output") | |
| outp2 = gr.HTML("""""") | |
| with gr.Row(): | |
| with gr.Box(): | |
| n_out3=gr.Label(label="Output") | |
| outp3 = gr.HTML("""""") | |
| with gr.Box(): | |
| n_out4=gr.Label(label="Output") | |
| outp4 = gr.HTML("""""") | |
| with gr.Box(): | |
| n_out5=gr.Label(label="Output") | |
| outp5 = gr.HTML("""""") | |
| hid_box=gr.Textbox(visible=False) | |
| hid_im = gr.Image(type="pil",visible=False) | |
| def echo(inp): | |
| return inp | |
| #inp.change(echo,inp,hid_im).then(upd,hid_im,inp) | |
| btn.click(fin_clear,None,fin,show_progress=False) | |
| load_btn.click(load_url,in_url,[inp,mes]) | |
| btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False) | |
| btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False) | |
| btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False) | |
| btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False) | |
| btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False) | |
| btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False) | |
| app.launch(show_api=False,max_threads=24) |