Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from sklearn.manifold import TSNE | |
| import streamlit as st | |
| from clarin_datasets.dataset_to_show import DatasetToShow | |
| from clarin_datasets.utils import embed_sentence, PLOT_COLOR_PALETTE | |
| class KpwrNerDataset(DatasetToShow): | |
| def __init__(self): | |
| DatasetToShow.__init__(self) | |
| self.data_dict_named = None | |
| self.dataset_name = "clarin-pl/kpwr-ner" | |
| self.description = [ | |
| f""" | |
| Dataset link: https://huggingface.co/datasets/{self.dataset_name} | |
| KPWR-NER is a part the Polish Corpus of Wrocław University of Technology (Korpus Języka | |
| Polskiego Politechniki Wrocławskiej). Its objective is named entity recognition for fine-grained categories | |
| of entities. It is the ‘n82’ version of the KPWr, which means that number of classes is restricted to 82 ( | |
| originally 120). During corpus creation, texts were annotated by humans from various sources, covering many | |
| domains and genres. | |
| """, | |
| "Tasks (input, output and metrics)", | |
| """ | |
| Named entity recognition (NER) - tagging entities in text with their corresponding type. | |
| Input ('tokens' column): sequence of tokens | |
| Output ('ner' column): sequence of predicted tokens’ classes in BIO notation (82 possible classes, described | |
| in detail in the annotation guidelines) | |
| example: | |
| [‘Roboty’, ‘mają’, ‘kilkanaście’, ‘lat’, ‘i’, ‘pochodzą’, ‘z’, ‘USA’, ‘,’, ‘Wysokie’, ‘napięcie’, ‘jest’, | |
| ‘dużo’, ‘młodsze’, ‘,’, ‘powstało’, ‘w’, ‘Niemczech’, ‘.’] → [‘B-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, | |
| ‘O’, ‘B-nam_loc_gpe_country’, ‘O’, ‘B-nam_pro_title’, ‘I-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, | |
| ‘B-nam_loc_gpe_country’, ‘O’] | |
| """, | |
| ] | |
| def load_data(self): | |
| raw_dataset = load_dataset(self.dataset_name) | |
| self.data_dict = { | |
| subset: raw_dataset[subset].to_pandas() for subset in self.subsets | |
| } | |
| self.data_dict_named = {} | |
| for subset in self.subsets: | |
| references = raw_dataset[subset]["ner"] | |
| references_named = [ | |
| [ | |
| raw_dataset[subset].features["ner"].feature.names[label] | |
| for label in labels | |
| ] | |
| for labels in references | |
| ] | |
| self.data_dict_named[subset] = pd.DataFrame( | |
| { | |
| "tokens": self.data_dict[subset]["tokens"], | |
| "ner": references_named, | |
| } | |
| ) | |
| def show_dataset(self): | |
| header = st.container() | |
| description = st.container() | |
| dataframe_head = st.container() | |
| class_distribution = st.container() | |
| most_common_tokens = st.container() | |
| tsne_projection = st.container() | |
| with header: | |
| st.title(self.dataset_name) | |
| with description: | |
| st.header("Dataset description") | |
| st.write(self.description[0]) | |
| st.subheader(self.description[1]) | |
| st.write(self.description[2]) | |
| full_dataframe = pd.concat(self.data_dict.values(), axis="rows") | |
| tokens_all = full_dataframe["tokens"].tolist() | |
| tokens_all = [x for subarray in tokens_all for x in subarray] | |
| labels_all = pd.concat(self.data_dict_named.values(), axis="rows")[ | |
| "ner" | |
| ].tolist() | |
| labels_all = [x for subarray in labels_all for x in subarray] | |
| with dataframe_head: | |
| st.header("First 10 observations of the chosen subset") | |
| selected_subset = st.selectbox( | |
| label="Select subset to see", options=self.subsets | |
| ) | |
| df_to_show = self.data_dict[selected_subset].head(10) | |
| st.dataframe(df_to_show) | |
| st.text_area(label="LaTeX code", value=df_to_show.style.to_latex()) | |
| class_distribution_dict = {} | |
| for subset in self.subsets: | |
| all_labels_from_subset = self.data_dict_named[subset]["ner"].tolist() | |
| all_labels_from_subset = [ | |
| x | |
| for subarray in all_labels_from_subset | |
| for x in subarray | |
| if x != "O" and not x.startswith("I-") | |
| ] | |
| all_labels_from_subset = pd.Series(all_labels_from_subset) | |
| class_distribution_dict[subset] = ( | |
| all_labels_from_subset.value_counts(normalize=True) | |
| .sort_index() | |
| .reset_index() | |
| .rename({"index": "class", 0: subset}, axis="columns") | |
| ) | |
| class_distribution_df = pd.merge( | |
| class_distribution_dict["train"], | |
| class_distribution_dict["test"], | |
| on="class", | |
| ) | |
| with class_distribution: | |
| st.header("Class distribution in each subset (without 'O' and 'I-*')") | |
| st.dataframe(class_distribution_df) | |
| st.text_area( | |
| label="LaTeX code", value=class_distribution_df.style.to_latex() | |
| ) | |
| # Most common tokens from selected class (without 0) | |
| full_df_unzipped = pd.DataFrame( | |
| { | |
| "token": tokens_all, | |
| "ner": labels_all, | |
| } | |
| ) | |
| full_df_unzipped = full_df_unzipped.loc[ | |
| (full_df_unzipped["ner"] != "O") | |
| & ~(full_df_unzipped["ner"].str.startswith("I-")) | |
| ] | |
| possible_options = sorted(full_df_unzipped["ner"].unique()) | |
| with most_common_tokens: | |
| st.header( | |
| "10 most common tokens from selected class (without 'O' and 'I-*')" | |
| ) | |
| selected_class = st.selectbox( | |
| label="Select class to show", options=possible_options | |
| ) | |
| df_to_show = ( | |
| full_df_unzipped.loc[full_df_unzipped["ner"] == selected_class] | |
| .groupby(["token"]) | |
| .count() | |
| .reset_index() | |
| .rename({"ner": "no_of_occurrences"}, axis=1) | |
| .sort_values(by="no_of_occurrences", ascending=False) | |
| .reset_index(drop=True) | |
| .head(10) | |
| ) | |
| st.dataframe(df_to_show) | |
| st.text_area(label="LaTeX code", value=df_to_show.style.to_latex()) | |
| SHOW_TSNE_PROJECTION = False | |
| if SHOW_TSNE_PROJECTION: | |
| with tsne_projection: | |
| st.header("t-SNE projection of the dataset") | |
| subset_to_project = st.selectbox( | |
| label="Select subset to project", options=self.subsets | |
| ) | |
| tokens_unzipped = self.data_dict_named[subset_to_project]["tokens"].tolist() | |
| tokens_unzipped = np.array([x for subarray in tokens_unzipped for x in subarray]) | |
| labels_unzipped = self.data_dict_named[subset_to_project]["ner"].tolist() | |
| labels_unzipped = np.array([x for subarray in labels_unzipped for x in subarray]) | |
| df_unzipped = pd.DataFrame( | |
| { | |
| "tokens": tokens_unzipped, | |
| "ner": labels_unzipped, | |
| } | |
| ) | |
| df_unzipped = df_unzipped.loc[ | |
| (df_unzipped["ner"] != "O") | |
| & ~(df_unzipped["ner"].str.startswith("I-")) | |
| ] | |
| tokens_unzipped = df_unzipped["tokens"].values | |
| labels_unzipped = df_unzipped["ner"].values | |
| mapping_dict = {name: number for number, name in enumerate(set(labels_unzipped))} | |
| labels_as_ints = [mapping_dict[label] for label in labels_unzipped] | |
| embedded_tokens = np.array( | |
| [embed_sentence(x) for x in tokens_unzipped] | |
| ) | |
| reducer = TSNE( | |
| n_components=2 | |
| ) | |
| transformed_embeddings = reducer.fit_transform(embedded_tokens) | |
| fig, ax = plt.subplots() | |
| ax.scatter( | |
| x=transformed_embeddings[:, 0], | |
| y=transformed_embeddings[:, 1], | |
| c=[ | |
| PLOT_COLOR_PALETTE[i] for i in labels_as_ints | |
| ] | |
| ) | |
| st.pyplot(fig) | |