Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import pandas as pd | |
| import plotly.figure_factory as ff | |
| import plotly.graph_objects as go | |
| import streamlit as st | |
| from sklearn.manifold import TSNE | |
| from clarin_datasets.dataset_to_show import DatasetToShow | |
| from clarin_datasets.utils import ( | |
| count_num_of_characters, | |
| count_num_of_words, | |
| ) | |
| from clarin_datasets.utils import embed_sentence | |
| class AbusiveClausesDataset(DatasetToShow): | |
| def __init__(self): | |
| DatasetToShow.__init__(self) | |
| self.dataset_name = "laugustyniak/abusive-clauses-pl" | |
| self.subsets = ["train", "validation", "test"] | |
| self.description = f""" | |
| Dataset link: https://huggingface.co/datasets/{self.dataset_name} | |
| ''I have read and agree to the terms and conditions'' is one of the biggest lies on the Internet. | |
| Consumers rarely read the contracts they are required to accept. We conclude agreements over the Internet daily. | |
| But do we know the content of these agreements? Do we check potential unfair statements? On the Internet, | |
| we probably skip most of the Terms and Conditions. However, we must remember that we have concluded many more | |
| contracts. Imagine that we want to buy a house, a car, send our kids to the nursery, open a bank account, | |
| or many more. In all these situations, you will need to conclude the contract, but there is a high probability | |
| that you will not read the entire agreement with proper understanding. European consumer law aims to prevent | |
| businesses from using so-called ''unfair contractual terms'' in their unilaterally drafted contracts, | |
| requiring consumers to accept. | |
| Our dataset treats ''unfair contractual term'' as the equivalent of an abusive clause. It could be defined as a | |
| clause that is unilaterally imposed by one of the contract's parties, unequally affecting the other, or creating a | |
| situation of imbalance between the duties and rights of the parties. | |
| On the EU and at the national such as the Polish levels, agencies cannot check possible agreements by hand. Hence, | |
| we took the first step to evaluate the possibility of accelerating this process. We created a dataset and machine | |
| learning models to automate potentially abusive clauses detection partially. Consumer protection organizations and | |
| agencies can use these resources to make their work more effective and efficient. Moreover, consumers can automatically | |
| analyze contracts and understand what they agree upon. | |
| """ | |
| def load_data(self): | |
| self.data_dict = { | |
| subset: pd.read_csv(f"data/{subset}.csv").rename( | |
| {"label": "target"}, axis="columns" | |
| ) | |
| for subset in self.subsets | |
| } | |
| def show_dataset(self): | |
| header = st.container() | |
| description = st.container() | |
| dataframe_head = st.container() | |
| word_searching = st.container() | |
| dataset_statistics = st.container() | |
| tsne_projection = st.container() | |
| with header: | |
| st.title(self.dataset_name) | |
| with description: | |
| st.header("Dataset description") | |
| st.write(self.description) | |
| with dataframe_head: | |
| filtering_options = self.data_dict["train"]["target"].unique().tolist() | |
| filtering_options.append("All classes") | |
| st.header("First 10 observations of a chosen class") | |
| class_to_show = st.selectbox( | |
| label="Select class to show", options=filtering_options | |
| ) | |
| df_to_show = pd.concat( | |
| [ | |
| self.data_dict["train"].copy(), | |
| self.data_dict["validation"].copy(), | |
| self.data_dict["test"].copy(), | |
| ] | |
| ) | |
| if class_to_show == "All classes": | |
| df_to_show = df_to_show.head(10) | |
| else: | |
| df_to_show = df_to_show.loc[df_to_show["target"] == class_to_show].head( | |
| 10 | |
| ) | |
| st.dataframe(df_to_show) | |
| st.text_area(label="Latex code", value=df_to_show.style.to_latex()) | |
| with word_searching: | |
| st.header("Observations containing a chosen word") | |
| searched_word = st.text_input( | |
| label="Enter the word you are looking for below" | |
| ) | |
| df_to_show = pd.concat( | |
| [ | |
| self.data_dict["train"].copy(), | |
| self.data_dict["validation"].copy(), | |
| self.data_dict["test"].copy(), | |
| ] | |
| ) | |
| df_to_show = df_to_show.loc[df_to_show["text"].str.contains(searched_word)] | |
| st.dataframe(df_to_show) | |
| st.text_area(label="Latex code", value=df_to_show.style.to_latex()) | |
| with dataset_statistics: | |
| st.header("Dataset statistics") | |
| st.subheader("Number of samples in each data split") | |
| metrics_df = pd.DataFrame.from_dict( | |
| { | |
| "Train": self.data_dict["train"].shape[0], | |
| "Validation": self.data_dict["validation"].shape[0], | |
| "Test": self.data_dict["test"].shape[0], | |
| "Total": sum( | |
| [ | |
| self.data_dict["train"].shape[0], | |
| self.data_dict["validation"].shape[0], | |
| self.data_dict["test"].shape[0], | |
| ] | |
| ), | |
| }, | |
| orient="index", | |
| ).reset_index() | |
| metrics_df.columns = ["Subset", "Number of samples"] | |
| st.dataframe(metrics_df) | |
| latex_df = metrics_df.style.to_latex() | |
| st.text_area(label="Latex code", value=latex_df) | |
| # Class distribution in each subset | |
| st.subheader("Class distribution in each subset") | |
| target_unique_values = self.data_dict["train"]["target"].unique() | |
| hist = ( | |
| pd.DataFrame( | |
| [ | |
| df["target"].value_counts(normalize=True).rename(k) | |
| for k, df in self.data_dict.items() | |
| ] | |
| ) | |
| .reset_index() | |
| .rename({"index": "split_name"}, axis=1) | |
| ) | |
| plot_data = [ | |
| go.Bar( | |
| name=str(target_unique_values[i]), | |
| x=self.subsets, | |
| y=hist[target_unique_values[i]].values, | |
| ) | |
| for i in range(len(target_unique_values)) | |
| ] | |
| barchart_class_dist = go.Figure(data=plot_data) | |
| barchart_class_dist.update_layout( | |
| barmode="group", | |
| title_text="Barchart - class distribution", | |
| xaxis_title="Split name", | |
| yaxis_title="Number of data points", | |
| ) | |
| st.plotly_chart(barchart_class_dist, use_container_width=True) | |
| st.dataframe(hist) | |
| st.text_area(label="Latex code", value=hist.style.to_latex()) | |
| # Number of words per observation | |
| st.subheader("Number of words per observation in each subset") | |
| hist_data_num_words = [ | |
| df["text"].apply(count_num_of_words) for df in self.data_dict.values() | |
| ] | |
| fig_num_words = ff.create_distplot( | |
| hist_data_num_words, self.subsets, show_rug=False, bin_size=1 | |
| ) | |
| fig_num_words.update_traces( | |
| nbinsx=100, autobinx=True, selector={"type": "histogram"} | |
| ) | |
| fig_num_words.update_layout( | |
| title_text="Histogram - number of characters per observation", | |
| xaxis_title="Number of characters", | |
| ) | |
| st.plotly_chart(fig_num_words, use_container_width=True) | |
| # Number of characters per observation | |
| st.subheader("Number of characters per observation in each subset") | |
| hist_data_num_characters = [ | |
| df["text"].apply(count_num_of_characters) | |
| for df in self.data_dict.values() | |
| ] | |
| fig_num_chars = ff.create_distplot( | |
| hist_data_num_characters, self.subsets, show_rug=False, bin_size=1 | |
| ) | |
| fig_num_chars.update_layout( | |
| title_text="Histogram - number of characters per observation", | |
| xaxis_title="Number of characters", | |
| ) | |
| st.plotly_chart(fig_num_chars, use_container_width=True) | |
| with tsne_projection: | |
| st.header("t-SNE projection of the dataset") | |
| subset_to_project = st.selectbox( | |
| label="Select subset to project", options=self.subsets | |
| ) | |
| sentences = self.data_dict[subset_to_project]["text"].values | |
| reducer = TSNE( | |
| n_components=2 | |
| ) | |
| embedded_sentences = np.array( | |
| [embed_sentence(text) for text in sentences] | |
| ) | |
| transformed_embeddings = reducer.fit_transform(embedded_sentences) | |
| fig, ax = plt.subplots() | |
| ax.scatter( | |
| x=transformed_embeddings[:, 0], | |
| y=transformed_embeddings[:, 1], | |
| c=[ | |
| sns.color_palette()[x] | |
| for x in self.data_dict[subset_to_project]["target"].map( | |
| { | |
| "BEZPIECZNE_POSTANOWIENIE_UMOWNE": 0, | |
| "KLAUZULA_ABUZYWNA": 1 | |
| } | |
| ).values | |
| ], | |
| ) | |
| st.pyplot(fig) | |