Spaces:
Runtime error
Runtime error
download querier from hf directly; remove examples
Browse files- app.py +0 -12
- core/models/e2e/querier/passt.py +3 -1
app.py
CHANGED
|
@@ -140,18 +140,6 @@ with gr.Blocks() as demo:
|
|
| 140 |
outputs=[out_audio, status]
|
| 141 |
)
|
| 142 |
|
| 143 |
-
# 示例部分
|
| 144 |
-
gr.Examples(
|
| 145 |
-
examples=[
|
| 146 |
-
["examples/noisy_1.wav", "audio", "examples/query_1.wav", ""],
|
| 147 |
-
["examples/noisy_2.wav", "text", "", "提取人声"],
|
| 148 |
-
["examples/noisy_3.wav", "text", "", "去除背景噪声"],
|
| 149 |
-
],
|
| 150 |
-
inputs=[inp_audio, query_type, inp_query_audio, inp_query_text],
|
| 151 |
-
label="样例音频",
|
| 152 |
-
examples_per_page=3,
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
# Queue: keep a small queue to avoid OOM
|
| 156 |
demo.queue(max_size=8) # 减少队列大小,因为现在需要更多资源
|
| 157 |
demo.launch()
|
|
|
|
| 140 |
outputs=[out_audio, status]
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# Queue: keep a small queue to avoid OOM
|
| 144 |
demo.queue(max_size=8) # 减少队列大小,因为现在需要更多资源
|
| 145 |
demo.launch()
|
core/models/e2e/querier/passt.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio as ta
|
| 3 |
from hear21passt.base import get_basic_model
|
|
@@ -17,7 +18,8 @@ class Passt(nn.Module):
|
|
| 17 |
super().__init__()
|
| 18 |
|
| 19 |
self.passt = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base')
|
| 20 |
-
|
|
|
|
| 21 |
self.resample = ta.transforms.Resample(
|
| 22 |
orig_freq=original_fs, new_freq=passt_fs
|
| 23 |
).eval()
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
import torch
|
| 3 |
import torchaudio as ta
|
| 4 |
from hear21passt.base import get_basic_model
|
|
|
|
| 18 |
super().__init__()
|
| 19 |
|
| 20 |
self.passt = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base')
|
| 21 |
+
ckpt_path = hf_hub_download(repo_id="lukewys/laion_clap", filename="music_speech_epoch_15_esc_89.25.pt")
|
| 22 |
+
self.passt.load_ckpt(ckpt_path)
|
| 23 |
self.resample = ta.transforms.Resample(
|
| 24 |
orig_freq=original_fs, new_freq=passt_fs
|
| 25 |
).eval()
|