Spaces:
Sleeping
Sleeping
File size: 6,034 Bytes
d572f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import argparse
import torch
import torchaudio
from typing import Tuple
import numpy as np
def load_and_preprocess_audio(
audio_path: str,
target_sample_rate: int = 44100,
target_channels: int = 1,
verbose: bool = True
) -> torch.Tensor:
# 加载音频
waveform, orig_sample_rate = torchaudio.load(audio_path)
if verbose:
print(f"Loaded audio: {audio_path}")
print(f" Original shape: {waveform.shape}")
print(f" Original sample rate: {orig_sample_rate} Hz")
print(f" Duration: {waveform.shape[1] / orig_sample_rate:.2f} seconds")
print(f" Target sample rate: {target_sample_rate} Hz")
print(f" Target channels: {target_channels}")
# 重采样处理
if orig_sample_rate != target_sample_rate:
if verbose:
print(f" Resampling: {orig_sample_rate} Hz -> {target_sample_rate} Hz")
resampler = torchaudio.transforms.Resample(
orig_sample_rate, target_sample_rate
)
waveform = resampler(waveform)
if verbose:
print(f" After resampling shape: {waveform.shape}")
print(f" New duration: {waveform.shape[1] / target_sample_rate:.2f} seconds")
# 通道处理
current_channels = waveform.shape[0]
if current_channels > target_channels:
if verbose:
print(f" Downmixing: {current_channels} channels -> {target_channels} channel(s)")
print(f" Using mean averaging for downmixing")
assert target_channels == 1, "Downmixing only supported to mono"
waveform = waveform.mean(dim=0, keepdim=True)
if verbose:
print(f" After downmixing shape: {waveform.shape}")
elif current_channels < target_channels:
if verbose:
print(f" Upmixing: {current_channels} channel(s) -> {target_channels} channels")
print(f" Repeating single channel data")
assert waveform.shape[0] == 1, "Upmixing only supported from mono"
waveform = waveform.repeat(target_channels, 1)
if verbose:
print(f" After upmixing shape: {waveform.shape}")
else:
if verbose:
print(f" No channel conversion needed (already {target_channels} channels)")
# 最终信息
if verbose:
print(f" Final shape: {waveform.shape}")
print(f" Final sample rate: {target_sample_rate} Hz")
print(f" Final duration: {waveform.shape[1] / target_sample_rate:.2f} seconds")
print("-" * 50)
return waveform
def align_audio_length(
audio1: torch.Tensor,
audio2: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
min_length = min(audio1.shape[1], audio2.shape[1])
audio1_aligned = audio1[:, :min_length]
audio2_aligned = audio2[:, :min_length]
return audio1_aligned, audio2_aligned
def subtract_audio_files(
audio1_path: str,
audio2_path: str,
output_path: str,
target_sample_rate: int = 44100,
target_channels: int = 1,
normalize_output: bool = True,
verbose: bool = True
):
"""
读取两个音频文件,相减后保存到输出文件
Args:
audio1_path: 第一个音频文件路径
audio2_path: 第二个音频文件路径
output_path: 输出音频文件路径
target_sample_rate: 目标采样率
target_channels: 目标通道数
normalize_output: 是否对输出进行归一化
verbose: 是否显示详细信息
"""
# 加载并预处理音频
audio1 = load_and_preprocess_audio(
audio1_path, target_sample_rate, target_channels, verbose
)
audio2 = load_and_preprocess_audio(
audio2_path, target_sample_rate, target_channels, verbose
)
# 对齐音频长度
audio1, audio2 = align_audio_length(audio1, audio2)
if verbose:
print(f"Audio 1 shape after alignment: {audio1.shape}")
print(f"Audio 2 shape after alignment: {audio2.shape}")
# 音频相减
result_audio = audio1 - audio2
if verbose:
print(f"Result audio shape: {result_audio.shape}")
print(f"Result audio range: [{result_audio.min():.4f}, {result_audio.max():.4f}]")
# 可选:归一化输出
if normalize_output:
max_val = torch.max(torch.abs(result_audio))
if max_val > 0:
result_audio = result_audio / max_val
if verbose:
print(f"Normalized result audio range: [{result_audio.min():.4f}, {result_audio.max():.4f}]")
# 保存结果
torchaudio.save(output_path, result_audio, target_sample_rate)
if verbose:
print(f"Result saved to: {output_path}")
print(f"Sample rate: {target_sample_rate} Hz")
print(f"Channels: {result_audio.shape[0]}")
print(f"Duration: {result_audio.shape[1] / target_sample_rate:.2f} seconds")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Subtract two audio files and save the result")
parser.add_argument("audio1", help="First audio file (e.g., a.wav)")
parser.add_argument("audio2", help="Second audio file (e.g., b.wav)")
parser.add_argument("output", help="Output audio file (e.g., result.wav)")
parser.add_argument("--sample_rate", type=int, default=44100,
help="Target sample rate (default: 44100)")
parser.add_argument("--channels", type=int, default=1,
help="Target number of channels (default: 1)")
parser.add_argument("--no_normalize", action="store_true",
help="Disable output normalization")
args = parser.parse_args()
subtract_audio_files(
audio1_path=args.audio1,
audio2_path=args.audio2,
output_path=args.output,
target_sample_rate=args.sample_rate,
target_channels=args.channels,
normalize_output=not args.no_normalize,
verbose=True
) |