File size: 2,240 Bytes
9f787c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from train import init, inference_file
import tempfile

# ===== Basic config =====
USE_CUDA = torch.cuda.is_available()
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "12"))

# Read model repo and filename from environment variables
REPO_ID  = os.getenv("MODEL_REPO_ID", "chenxie95/Language-Audio-Banquet-ckpt")
FILENAME = os.getenv("MODEL_FILENAME", "ev-pre-aug.ckpt")

# ===== Download & load weights =====
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
system = init(ckpt_path, batch_size=BATCH_SIZE, use_cuda=USE_CUDA)

# ===== Inference =====
def inference(audio_path: str):
    temp_dir = tempfile.gettempdir()
    output_filename = os.path.basename(audio_path).replace('.wav', '_enhanced.wav')
    output_path = os.path.join(temp_dir, output_filename)
    inference_file(system, audio_path, output_path, audio_path)
    return output_path

# ===== Gradio UI =====
with gr.Blocks() as demo:
    gr.Markdown(
        """
# 🎧 DCCRN Speech Enhancement (Demo)
**How to use:** drag & drop a noisy audio clip (or upload / record) → click **Enhance** → listen & download the result.
**Sample audio:** click a sample below to auto-fill the input, then click **Enhance**.
        """
    )

    with gr.Row():
        inp = gr.Audio(
            sources=["upload", "microphone"],     # drag & drop supported by default
            type="filepath",
            label="Input: noisy speech (drag & drop or upload / record)"
        )
        out = gr.Audio(
            label="Output: enhanced speech (downloadable)",
            show_download_button=True
        )

    enhance_btn = gr.Button("Enhance")

    # On-page sample clips (make sure these files exist in the repo)
    gr.Examples(
        examples=[
            ["examples/noisy_1.wav"],
            ["examples/noisy_2.wav"],
            ["examples/noisy_3.wav"],
        ],
        inputs=inp,
        label="Sample audio",
        examples_per_page=3,
    )

    # Gradio ≥4.44: set concurrency on the event listener
    enhance_btn.click(inference, inputs=inp, outputs=out, concurrency_limit=1)

# Queue: keep a small queue to avoid OOM
demo.queue(max_size=16)
demo.launch()