File size: 5,159 Bytes
d572f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import torch
import torchaudio
from typing import Tuple
import museval
from museval.aggregate import TrackStore

from core.metrics.snr import safe_signal_noise_ratio, safe_scale_invariant_signal_noise_ratio
from torchmetrics.audio import SignalNoiseRatio, ScaleInvariantSignalNoiseRatio, SignalDistortionRatio, ScaleInvariantSignalDistortionRatio

def load_and_preprocess_audio(
    audio_path: str, 
    target_sample_rate: int = 44100,
    target_channels: int = 1,
    verbose: bool = True
) -> torch.Tensor:
    # 加载音频
    waveform, orig_sample_rate = torchaudio.load(audio_path)
    
    if verbose:
        print(f"Loaded audio: {audio_path}")
        print(f"  Original shape: {waveform.shape}")
        print(f"  Original sample rate: {orig_sample_rate} Hz")
        print(f"  Duration: {waveform.shape[1] / orig_sample_rate:.2f} seconds")
        print(f"  Target sample rate: {target_sample_rate} Hz")
        print(f"  Target channels: {target_channels}")
    
    # 重采样处理
    if orig_sample_rate != target_sample_rate:
        if verbose:
            print(f"  Resampling: {orig_sample_rate} Hz -> {target_sample_rate} Hz")
        
        resampler = torchaudio.transforms.Resample(
            orig_sample_rate, target_sample_rate
        )
        waveform = resampler(waveform)
        
        if verbose:
            print(f"  After resampling shape: {waveform.shape}")
            print(f"  New duration: {waveform.shape[1] / target_sample_rate:.2f} seconds")
    
    # 通道处理
    current_channels = waveform.shape[0]
    
    if current_channels > target_channels:
        if verbose:
            print(f"  Downmixing: {current_channels} channels -> {target_channels} channel(s)")
            print(f"  Using mean averaging for downmixing")
        
        assert target_channels == 1, "Downmixing only supported to mono"
        waveform = waveform.mean(dim=0, keepdim=True)
        
        if verbose:
            print(f"  After downmixing shape: {waveform.shape}")
    
    elif current_channels < target_channels:
        if verbose:
            print(f"  Upmixing: {current_channels} channel(s) -> {target_channels} channels")
            print(f"  Repeating single channel data")
        
        assert waveform.shape[0] == 1, "Upmixing only supported from mono"
        waveform = waveform.repeat(target_channels, 1)
        
        if verbose:
            print(f"  After upmixing shape: {waveform.shape}")
    
    else:
        if verbose:
            print(f"  No channel conversion needed (already {target_channels} channels)")
    
    # 最终信息
    if verbose:
        print(f"  Final shape: {waveform.shape}")
        print(f"  Final sample rate: {target_sample_rate} Hz")
        print(f"  Final duration: {waveform.shape[1] / target_sample_rate:.2f} seconds")
        print("-" * 50)
    
    return waveform

def align_audio_length(
    audio1: torch.Tensor, 
    audio2: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    min_length = min(audio1.shape[1], audio2.shape[1])
    audio1_aligned = audio1[:, :min_length]
    audio2_aligned = audio2[:, :min_length]
    return audio1_aligned, audio2_aligned

def calculate_audio_snr(
    pred_audio_path: str,
    target_audio_path: str,
):
    target_audio, target_sr = torchaudio.load(target_audio_path)
    target_sample_rate = target_sr
    target_channels = target_audio.shape[0]

    pred_audio = load_and_preprocess_audio(
        pred_audio_path, target_sample_rate, target_channels
    )
    target_audio = load_and_preprocess_audio(
        target_audio_path, target_sample_rate, target_channels
    )
    
    pred_audio, target_audio = align_audio_length(pred_audio, target_audio)
    
    SDR, ISR, SIR, SAR = museval.evaluate(pred_audio.T.unsqueeze(0), target_audio.T.unsqueeze(0))
    data = TrackStore(track_name="test")
    data.add_target(target_name="target", values={"SDR": SDR[0].tolist(), "SIR": SIR[0].tolist(), "SAR": SAR[0].tolist(), "ISR": ISR[0].tolist()})
    print("MusEval results: ")
    print(data)
    
    snr_value = safe_signal_noise_ratio(pred_audio, target_audio)
    print("SNR", snr_value)
    
    sisnr_value = safe_scale_invariant_signal_noise_ratio(pred_audio, target_audio)
    print("SI-SNR", sisnr_value)
    
    torch_snr = SignalNoiseRatio()
    torch_snr_value = torch_snr(pred_audio, target_audio)
    print("Torch SNR", torch_snr_value)
    
    torch_sisnr = ScaleInvariantSignalNoiseRatio()
    torch_sisnr_value = torch_sisnr(pred_audio, target_audio)
    print("Torch SI-SNR", torch_sisnr_value)
    
    torch_sdr = SignalDistortionRatio()
    torch_sdr_value = torch_sdr(pred_audio, target_audio)
    print("Torch SDR", torch_sdr_value)
    
    torch_sisdr = ScaleInvariantSignalDistortionRatio()
    torch_sisdr_value = torch_sisdr(pred_audio, target_audio)
    print("Torch SI-SDR", torch_sisdr_value)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="metric")
    parser.add_argument("a", help="a.wav")
    parser.add_argument("b", help="b.wav")
    
    args = parser.parse_args()
    
    calculate_audio_snr(args.a, args.b)