Spaces:
Runtime error
Runtime error
Update app/rag.py
Browse files- app/rag.py +18 -27
app/rag.py
CHANGED
|
@@ -4,8 +4,7 @@ from llama_index.core import (
|
|
| 4 |
SimpleDirectoryReader,
|
| 5 |
VectorStoreIndex,
|
| 6 |
StorageContext,
|
| 7 |
-
Settings
|
| 8 |
-
get_response_synthesizer)
|
| 9 |
from llama_index.core.node_parser import SentenceSplitter
|
| 10 |
from llama_index.core.schema import TextNode, MetadataMode
|
| 11 |
from llama_index.core.vector_stores import VectorStoreQuery
|
|
@@ -20,6 +19,8 @@ store_dir = os.path.expanduser("~/wtp_be_store/")
|
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
class ChatPDF:
|
| 24 |
pdf_count = 0
|
| 25 |
text_chunks = []
|
|
@@ -33,33 +34,26 @@ class ChatPDF:
|
|
| 33 |
self.client = QdrantClient(path=store_dir)
|
| 34 |
self.vector_store = QdrantVectorStore(
|
| 35 |
client=self.client,
|
| 36 |
-
collection_name="rag_documents"
|
| 37 |
-
# enable_hybrid=True
|
| 38 |
)
|
| 39 |
|
| 40 |
logger.info("initializing the FastEmbedEmbedding")
|
| 41 |
-
self.embed_model = FastEmbedEmbedding(
|
| 42 |
-
# model_name="BAAI/bge-small-en"
|
| 43 |
-
)
|
| 44 |
|
| 45 |
llm = LlamaCPP(
|
| 46 |
-
model_url=
|
| 47 |
temperature=0.1,
|
|
|
|
| 48 |
max_new_tokens=256,
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
# completion_to_prompt=self.completion_to_prompt,
|
| 52 |
verbose=True,
|
| 53 |
)
|
| 54 |
|
| 55 |
-
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
| 56 |
-
# tokenizer.save_pretrained("./models/tokenizer/")
|
| 57 |
-
|
| 58 |
logger.info("initializing the global settings")
|
| 59 |
Settings.text_splitter = self.text_parser
|
| 60 |
Settings.embed_model = self.embed_model
|
| 61 |
Settings.llm = llm
|
| 62 |
-
# Settings.tokenzier = tokenizer
|
| 63 |
Settings.transformations = [self.text_parser]
|
| 64 |
|
| 65 |
def ingest(self, files_dir: str):
|
|
@@ -73,10 +67,8 @@ class ChatPDF:
|
|
| 73 |
self.doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
| 74 |
|
| 75 |
logger.info("enumerating text_chunks")
|
| 76 |
-
for
|
| 77 |
node = TextNode(text=text_chunk)
|
| 78 |
-
# src_doc = docs[self.doc_ids[idx]]
|
| 79 |
-
# node.metadata = src_doc.metadata
|
| 80 |
if node.get_content(metadata_mode=MetadataMode.EMBED):
|
| 81 |
self.nodes.append(node)
|
| 82 |
|
|
@@ -93,7 +85,7 @@ class ChatPDF:
|
|
| 93 |
index = VectorStoreIndex(
|
| 94 |
nodes=self.nodes,
|
| 95 |
storage_context=storage_context,
|
| 96 |
-
transformations=Settings.transformations
|
| 97 |
)
|
| 98 |
|
| 99 |
self.query_engine = index.as_query_engine(
|
|
@@ -103,14 +95,13 @@ class ChatPDF:
|
|
| 103 |
|
| 104 |
def ask(self, query: str):
|
| 105 |
logger.info("retrieving the response to the query")
|
| 106 |
-
streaming_response = self.query_engine.query(
|
|
|
|
| 107 |
return streaming_response
|
| 108 |
|
| 109 |
def clear(self):
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
self.doc_ids = []
|
| 116 |
-
self.nodes = []
|
|
|
|
| 4 |
SimpleDirectoryReader,
|
| 5 |
VectorStoreIndex,
|
| 6 |
StorageContext,
|
| 7 |
+
Settings)
|
|
|
|
| 8 |
from llama_index.core.node_parser import SentenceSplitter
|
| 9 |
from llama_index.core.schema import TextNode, MetadataMode
|
| 10 |
from llama_index.core.vector_stores import VectorStoreQuery
|
|
|
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
+
model_url = "https://huggingface.co/Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-q4_k_m.gguf"
|
| 23 |
+
|
| 24 |
class ChatPDF:
|
| 25 |
pdf_count = 0
|
| 26 |
text_chunks = []
|
|
|
|
| 34 |
self.client = QdrantClient(path=store_dir)
|
| 35 |
self.vector_store = QdrantVectorStore(
|
| 36 |
client=self.client,
|
| 37 |
+
collection_name="rag_documents"
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
logger.info("initializing the FastEmbedEmbedding")
|
| 41 |
+
self.embed_model = FastEmbedEmbedding()
|
|
|
|
|
|
|
| 42 |
|
| 43 |
llm = LlamaCPP(
|
| 44 |
+
model_url=model_url,
|
| 45 |
temperature=0.1,
|
| 46 |
+
model_path=None,
|
| 47 |
max_new_tokens=256,
|
| 48 |
+
context_window=29440,
|
| 49 |
+
generate_kwargs={},
|
|
|
|
| 50 |
verbose=True,
|
| 51 |
)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
| 53 |
logger.info("initializing the global settings")
|
| 54 |
Settings.text_splitter = self.text_parser
|
| 55 |
Settings.embed_model = self.embed_model
|
| 56 |
Settings.llm = llm
|
|
|
|
| 57 |
Settings.transformations = [self.text_parser]
|
| 58 |
|
| 59 |
def ingest(self, files_dir: str):
|
|
|
|
| 67 |
self.doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
| 68 |
|
| 69 |
logger.info("enumerating text_chunks")
|
| 70 |
+
for text_chunk in self.text_chunks:
|
| 71 |
node = TextNode(text=text_chunk)
|
|
|
|
|
|
|
| 72 |
if node.get_content(metadata_mode=MetadataMode.EMBED):
|
| 73 |
self.nodes.append(node)
|
| 74 |
|
|
|
|
| 85 |
index = VectorStoreIndex(
|
| 86 |
nodes=self.nodes,
|
| 87 |
storage_context=storage_context,
|
| 88 |
+
transformations=Settings.transformations
|
| 89 |
)
|
| 90 |
|
| 91 |
self.query_engine = index.as_query_engine(
|
|
|
|
| 95 |
|
| 96 |
def ask(self, query: str):
|
| 97 |
logger.info("retrieving the response to the query")
|
| 98 |
+
streaming_response = self.query_engine.query("You are an assistant for question-answering tasks. Use three \
|
| 99 |
+
sentences only and keep the answer concise.\n\n" + query)
|
| 100 |
return streaming_response
|
| 101 |
|
| 102 |
def clear(self):
|
| 103 |
+
self.vector_store.clear()
|
| 104 |
+
self.pdf_count = 0
|
| 105 |
+
self.text_chunks = []
|
| 106 |
+
self.doc_ids = []
|
| 107 |
+
self.nodes = []
|
|
|
|
|
|