Spaces:
Runtime error
Runtime error
Contrebande Labs
commited on
Commit
·
b07346d
1
Parent(s):
e0cb68e
put CPU offloading and half precision back
Browse files
app.py
CHANGED
|
@@ -18,7 +18,6 @@ from transformers import ByT5Tokenizer, FlaxT5ForConditionalGeneration
|
|
| 18 |
|
| 19 |
|
| 20 |
def get_inference_lambda(seed):
|
| 21 |
-
|
| 22 |
tokenizer = ByT5Tokenizer()
|
| 23 |
|
| 24 |
language_model = FlaxT5ForConditionalGeneration.from_pretrained(
|
|
@@ -53,17 +52,17 @@ def get_inference_lambda(seed):
|
|
| 53 |
}
|
| 54 |
)
|
| 55 |
timesteps = 20
|
| 56 |
-
guidance_scale = jnp.array([7.5], dtype=jnp.
|
| 57 |
|
| 58 |
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
| 59 |
"character-aware-diffusion/charred",
|
| 60 |
-
dtype=jnp.
|
| 61 |
)
|
| 62 |
|
| 63 |
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
| 64 |
"flax/stable-diffusion-2-1",
|
| 65 |
subfolder="vae",
|
| 66 |
-
dtype=jnp.
|
| 67 |
)
|
| 68 |
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
| 69 |
|
|
@@ -71,14 +70,13 @@ def get_inference_lambda(seed):
|
|
| 71 |
|
| 72 |
# Generating latent shape
|
| 73 |
latent_shape = (
|
| 74 |
-
negative_prompt_text_encoder_hidden_states.shape[0],
|
| 75 |
unet.in_channels,
|
| 76 |
image_width // vae_scale_factor,
|
| 77 |
image_height // vae_scale_factor,
|
| 78 |
)
|
| 79 |
|
| 80 |
def __tokenize_prompt(prompt: str):
|
| 81 |
-
|
| 82 |
return tokenizer(
|
| 83 |
text=prompt,
|
| 84 |
max_length=1024,
|
|
@@ -91,20 +89,21 @@ def get_inference_lambda(seed):
|
|
| 91 |
# create PIL image from JAX tensor converted to numpy
|
| 92 |
return Image.fromarray(np.asarray(image), mode="RGB")
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
|
| 96 |
# Get the text embedding
|
| 97 |
text_encoder_hidden_states = text_encoder(
|
| 98 |
tokenized_prompt,
|
| 99 |
params=text_encoder_params,
|
| 100 |
train=False,
|
| 101 |
)[0]
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
[negative_prompt_text_encoder_hidden_states, text_encoder_hidden_states]
|
| 104 |
)
|
| 105 |
|
|
|
|
| 106 |
def ___timestep(step, step_args):
|
| 107 |
-
|
| 108 |
latents, scheduler_state = step_args
|
| 109 |
|
| 110 |
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
|
|
@@ -153,7 +152,7 @@ def get_inference_lambda(seed):
|
|
| 153 |
# initialize latents
|
| 154 |
initial_latents = (
|
| 155 |
jax.random.normal(
|
| 156 |
-
jax.random.PRNGKey(seed), shape=latent_shape, dtype=jnp.
|
| 157 |
)
|
| 158 |
* initial_scheduler_state.init_noise_sigma
|
| 159 |
)
|
|
@@ -175,10 +174,16 @@ def get_inference_lambda(seed):
|
|
| 175 |
.astype(jnp.uint8)[0]
|
| 176 |
)
|
| 177 |
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
return lambda prompt: __convert_image(
|
| 181 |
-
|
|
|
|
|
|
|
| 182 |
)
|
| 183 |
|
| 184 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def get_inference_lambda(seed):
|
|
|
|
| 21 |
tokenizer = ByT5Tokenizer()
|
| 22 |
|
| 23 |
language_model = FlaxT5ForConditionalGeneration.from_pretrained(
|
|
|
|
| 52 |
}
|
| 53 |
)
|
| 54 |
timesteps = 20
|
| 55 |
+
guidance_scale = jnp.array([7.5], dtype=jnp.bfloat16)
|
| 56 |
|
| 57 |
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
| 58 |
"character-aware-diffusion/charred",
|
| 59 |
+
dtype=jnp.bfloat16,
|
| 60 |
)
|
| 61 |
|
| 62 |
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
| 63 |
"flax/stable-diffusion-2-1",
|
| 64 |
subfolder="vae",
|
| 65 |
+
dtype=jnp.bfloat16,
|
| 66 |
)
|
| 67 |
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
| 68 |
|
|
|
|
| 70 |
|
| 71 |
# Generating latent shape
|
| 72 |
latent_shape = (
|
| 73 |
+
negative_prompt_text_encoder_hidden_states.shape[0], # is th
|
| 74 |
unet.in_channels,
|
| 75 |
image_width // vae_scale_factor,
|
| 76 |
image_height // vae_scale_factor,
|
| 77 |
)
|
| 78 |
|
| 79 |
def __tokenize_prompt(prompt: str):
|
|
|
|
| 80 |
return tokenizer(
|
| 81 |
text=prompt,
|
| 82 |
max_length=1024,
|
|
|
|
| 89 |
# create PIL image from JAX tensor converted to numpy
|
| 90 |
return Image.fromarray(np.asarray(image), mode="RGB")
|
| 91 |
|
| 92 |
+
def __get_context(tokenized_prompt: jnp.array):
|
|
|
|
| 93 |
# Get the text embedding
|
| 94 |
text_encoder_hidden_states = text_encoder(
|
| 95 |
tokenized_prompt,
|
| 96 |
params=text_encoder_params,
|
| 97 |
train=False,
|
| 98 |
)[0]
|
| 99 |
+
|
| 100 |
+
# context = empty negative prompt embedding + prompt embedding
|
| 101 |
+
return jnp.concatenate(
|
| 102 |
[negative_prompt_text_encoder_hidden_states, text_encoder_hidden_states]
|
| 103 |
)
|
| 104 |
|
| 105 |
+
def __predict_image(context: jnp.array):
|
| 106 |
def ___timestep(step, step_args):
|
|
|
|
| 107 |
latents, scheduler_state = step_args
|
| 108 |
|
| 109 |
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
|
|
|
|
| 152 |
# initialize latents
|
| 153 |
initial_latents = (
|
| 154 |
jax.random.normal(
|
| 155 |
+
jax.random.PRNGKey(seed), shape=latent_shape, dtype=jnp.bfloat16
|
| 156 |
)
|
| 157 |
* initial_scheduler_state.init_noise_sigma
|
| 158 |
)
|
|
|
|
| 174 |
.astype(jnp.uint8)[0]
|
| 175 |
)
|
| 176 |
|
| 177 |
+
jax_jit_compiled_accel_predict_image = jax.jit(__predict_image)
|
| 178 |
+
|
| 179 |
+
jax_jit_compiled_cpu_get_context = jax.jit(
|
| 180 |
+
__get_context, device=jax.devices(backend="cpu")[0]
|
| 181 |
+
)
|
| 182 |
|
| 183 |
return lambda prompt: __convert_image(
|
| 184 |
+
jax_jit_compiled_accel_predict_image(
|
| 185 |
+
jax_jit_compiled_cpu_get_context(__tokenize_prompt(prompt))
|
| 186 |
+
)
|
| 187 |
)
|
| 188 |
|
| 189 |
|