Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
random.seed(999)
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision.transforms import transforms
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
model = torch.load('model.pth', map_location=torch.device('cpu'))
|
| 9 |
+
model.eval()
|
| 10 |
+
transform = transforms.Compose([
|
| 11 |
+
transforms.Resize((384, 384)),
|
| 12 |
+
transforms.ToTensor(),
|
| 13 |
+
transforms.Normalize(
|
| 14 |
+
mean=[
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5,
|
| 18 |
+
], std=[
|
| 19 |
+
0.5,
|
| 20 |
+
0.5,
|
| 21 |
+
0.5,
|
| 22 |
+
])
|
| 23 |
+
])
|
| 24 |
+
|
| 25 |
+
with open("tags_9940.json", "r") as file:
|
| 26 |
+
allowed_tags = json.load(file)
|
| 27 |
+
|
| 28 |
+
allowed_tags = sorted(allowed_tags)
|
| 29 |
+
allowed_tags.append("explicit")
|
| 30 |
+
allowed_tags.append("questionable")
|
| 31 |
+
allowed_tags.append("safe")
|
| 32 |
+
|
| 33 |
+
def create_tags(image, threshold):
|
| 34 |
+
img = image.convert('RGB')
|
| 35 |
+
tensor = transform(img).unsqueeze(0)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
logits = model(tensor)
|
| 39 |
+
probabilities = torch.nn.functional.sigmoid(logits[0])
|
| 40 |
+
indices = torch.where(probabilities > threshold)[0]
|
| 41 |
+
values = probabilities[indices]
|
| 42 |
+
|
| 43 |
+
temp = []
|
| 44 |
+
tag_score = dict()
|
| 45 |
+
for i in range(indices.size(0)):
|
| 46 |
+
temp.append([allowed_tags[indices[i]], values[i].item()])
|
| 47 |
+
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
| 48 |
+
# temp = sorted(temp, key=lambda x: x[1], reverse=True)
|
| 49 |
+
# print("Before adding implicated tags, there are " + str(len(temp)) + " tags")
|
| 50 |
+
temp = [t[0] for t in temp]
|
| 51 |
+
text_no_impl = " ".join(temp)
|
| 52 |
+
return text_no_impl, tag_score
|
| 53 |
+
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
create_tags,
|
| 56 |
+
inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")],
|
| 57 |
+
outputs=[
|
| 58 |
+
gr.Textbox(label="Tag String"),
|
| 59 |
+
gr.Label(label="Tag Predictions", num_top_classes=200),
|
| 60 |
+
],
|
| 61 |
+
allow_flagging="never",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
demo.launch()
|