Spaces:
Runtime error
Runtime error
| import json | |
| import random | |
| random.seed(999) | |
| import torch | |
| from torchvision.transforms import transforms | |
| import gradio as gr | |
| from datetime import datetime | |
| model = torch.load('model.pth', map_location=torch.device('cpu')) | |
| model.eval() | |
| transform = transforms.Compose([ | |
| transforms.Resize((384, 384)), | |
| transforms.ToTensor(), | |
| transforms.Normalize( | |
| mean=[ | |
| 0.5, | |
| 0.5, | |
| 0.5, | |
| ], std=[ | |
| 0.5, | |
| 0.5, | |
| 0.5, | |
| ]) | |
| ]) | |
| with open("tags_9940.json", "r") as file: | |
| allowed_tags = json.load(file) | |
| allowed_tags = sorted(allowed_tags) | |
| allowed_tags.append("explicit") | |
| allowed_tags.append("questionable") | |
| allowed_tags.append("safe") | |
| def create_tags(image, threshold): | |
| img = image.convert('RGB') | |
| tensor = transform(img).unsqueeze(0) | |
| with torch.no_grad(): | |
| logits = model(tensor) | |
| probabilities = torch.nn.functional.sigmoid(logits[0]) | |
| indices = torch.where(probabilities > threshold)[0] | |
| values = probabilities[indices] | |
| temp = [] | |
| tag_score = dict() | |
| for i in range(indices.size(0)): | |
| temp.append([allowed_tags[indices[i]], values[i].item()]) | |
| tag_score[allowed_tags[indices[i]]] = values[i].item() | |
| # temp = sorted(temp, key=lambda x: x[1], reverse=True) | |
| # print("Before adding implicated tags, there are " + str(len(temp)) + " tags") | |
| temp = [t[0] for t in temp] | |
| text_no_impl = " ".join(temp) | |
| current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
| print(f"{current_datetime}: finished.") | |
| return text_no_impl, tag_score | |
| demo = gr.Interface( | |
| create_tags, | |
| inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")], | |
| outputs=[ | |
| gr.Textbox(label="Tag String"), | |
| gr.Label(label="Tag Predictions", num_top_classes=200), | |
| ], | |
| allow_flagging="never", | |
| ) | |
| demo.launch() | |