Spaces:
Sleeping
Sleeping
| import json | |
| import time | |
| from PIL import Image | |
| import torch | |
| from torchvision.transforms import transforms | |
| import gradio as gr | |
| from huggingface_hub import snapshot_download | |
| snapshot_download(repo_id="Thouph/eva-vit-1b-224-8043", local_dir = "./") | |
| model = torch.load('model.pth', map_location=torch.device('cpu')) | |
| model.eval() | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[ | |
| 0.48145466, | |
| 0.4578275, | |
| 0.40821073 | |
| ], std=[ | |
| 0.26862954, | |
| 0.26130258, | |
| 0.27577711 | |
| ]) | |
| ]) | |
| with open("tags_8040.json", "r") as file: | |
| tags = json.load(file) | |
| allowed_tags = sorted(tags) | |
| allowed_tags.append("explicit") | |
| allowed_tags.append("questionable") | |
| allowed_tags.append("safe") | |
| def create_tags(image, thres): | |
| img = image.convert('RGB') | |
| tensor = transform(img).unsqueeze(0) | |
| with torch.no_grad(): | |
| out = model(tensor) | |
| probabilities = torch.nn.functional.sigmoid(out[0]) | |
| indices = torch.where(probabilities > thres)[0] | |
| values = probabilities[indices] | |
| temp = [] | |
| for i in range(indices.size(0)): | |
| temp.append([allowed_tags[indices[i]], values[i].item()]) | |
| text = "" | |
| for i in range(len(temp)): | |
| text += temp[i][0] + (', ' if i < len(temp) - 1 else '') | |
| text = text.replace(r"placeholder1, ", "") | |
| text = text.replace("_", " ") | |
| text = text.replace("(", "\\(").replace(")", "\\)") | |
| print(text) | |
| return text | |
| demo = gr.Interface( | |
| fn=create_tags, | |
| inputs=[gr.Image(type="pil"), gr.Slider(minimum=0, maximum = 1, step = 0.01, value = 0.3)], | |
| outputs=["text"], | |
| ) | |
| demo.queue() | |
| demo.launch(debug = True) | |