Update app.py
Browse files
app.py
CHANGED
|
@@ -1,131 +1,63 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
|
| 3 |
-
VQA — Memory + RL Controller (Gradio app)
|
| 4 |
-
- Drag-and-drop an image, ask a question, and see the model's answer + chosen strategy.
|
| 5 |
-
- Tries to import `answer_with_controller` from controller.py. Falls back to a stub if missing.
|
| 6 |
-
- Works on Hugging Face Spaces, Render, Docker, or local run.
|
| 7 |
-
"""
|
| 8 |
-
|
| 9 |
-
import os
|
| 10 |
-
import sys
|
| 11 |
-
import time
|
| 12 |
-
import traceback
|
| 13 |
-
import subprocess
|
| 14 |
from typing import Tuple, Optional
|
|
|
|
| 15 |
|
| 16 |
-
# Ensure gradio is available when running locally; Spaces installs from requirements.txt
|
| 17 |
try:
|
| 18 |
import gradio as gr
|
| 19 |
-
except ImportError:
|
| 20 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "gradio"])
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
-
from PIL import Image
|
| 24 |
-
|
| 25 |
-
# -----------------------------
|
| 26 |
-
# Attempt to import real handler
|
| 27 |
-
# -----------------------------
|
| 28 |
def _make_fallback():
|
| 29 |
-
def _fallback_answer_with_controller(
|
| 30 |
-
image: Image.Image,
|
| 31 |
-
question: str,
|
| 32 |
-
source: str = "auto",
|
| 33 |
-
distilled_model: str = "auto",
|
| 34 |
-
) -> Tuple[str, str, int]:
|
| 35 |
-
# Replace with real inference to remove this placeholder.
|
| 36 |
return "Placeholder answer (wire your models in controller.py).", "baseline", 0
|
| 37 |
return _fallback_answer_with_controller
|
| 38 |
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
from controller import answer_with_controller # type: ignore
|
| 42 |
except Exception as e:
|
| 43 |
print(f"[WARN] Using fallback controller because import failed: {e}", flush=True)
|
| 44 |
answer_with_controller = _make_fallback()
|
| 45 |
|
| 46 |
-
# -----------------------------
|
| 47 |
-
# UI Constants
|
| 48 |
-
# -----------------------------
|
| 49 |
TITLE = "VQA — Memory + RL Controller"
|
| 50 |
-
DESCRIPTION =
|
| 51 |
-
"Upload an image, enter a question, and the controller will choose the best decoding strategy."
|
| 52 |
-
)
|
| 53 |
|
| 54 |
CONTROLLER_SOURCES = ["auto", "distilled", "ppo", "baseline"]
|
| 55 |
DISTILLED_CHOICES = ["auto", "logreg", "mlp32"]
|
| 56 |
|
| 57 |
-
|
| 58 |
-
# Inference wrapper with guards
|
| 59 |
-
# -----------------------------
|
| 60 |
-
def vqa_demo_fn(
|
| 61 |
-
image: Optional[Image.Image],
|
| 62 |
-
question: str,
|
| 63 |
-
source: str,
|
| 64 |
-
distilled_model: str,
|
| 65 |
-
) -> Tuple[str, str, float]:
|
| 66 |
-
"""Safely run inference and return (answer, strategy_label, latency_ms)."""
|
| 67 |
-
# Input validation
|
| 68 |
if image is None:
|
| 69 |
return "Please upload an image.", "", 0.0
|
| 70 |
question = (question or "").strip()
|
| 71 |
if not question:
|
| 72 |
return "Please enter a question.", "", 0.0
|
| 73 |
-
|
| 74 |
-
# Convert & measure latency
|
| 75 |
t0 = time.perf_counter()
|
| 76 |
try:
|
| 77 |
-
# Convert to RGB to avoid issues with PNG/L mode
|
| 78 |
image_rgb = image.convert("RGB")
|
| 79 |
-
|
| 80 |
pred, strategy_name, action_id = answer_with_controller(
|
| 81 |
-
image_rgb,
|
| 82 |
-
question,
|
| 83 |
-
source=source,
|
| 84 |
-
distilled_model=distilled_model,
|
| 85 |
)
|
| 86 |
-
|
| 87 |
latency_ms = (time.perf_counter() - t0) * 1000.0
|
| 88 |
-
|
| 89 |
-
strategy_out = f"{action_id} → {strategy_name}"
|
| 90 |
-
return str(pred), strategy_out, round(latency_ms, 1)
|
| 91 |
-
|
| 92 |
except Exception as err:
|
| 93 |
-
# Never crash the app — show a concise error to the user and log details to server
|
| 94 |
latency_ms = (time.perf_counter() - t0) * 1000.0
|
| 95 |
print("[ERROR] Inference failed:\n" + "".join(traceback.format_exc()), flush=True)
|
| 96 |
return f"Error: {err}", "error", round(latency_ms, 1)
|
| 97 |
|
| 98 |
-
# -----------------------------
|
| 99 |
-
# Build Gradio Interface
|
| 100 |
-
# -----------------------------
|
| 101 |
with gr.Blocks(title=TITLE, analytics_enabled=False) as demo:
|
| 102 |
gr.Markdown(f"### {TITLE}\n{DESCRIPTION}")
|
| 103 |
-
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column():
|
| 106 |
img_in = gr.Image(
|
| 107 |
type="pil",
|
| 108 |
label="Image",
|
| 109 |
height=320,
|
| 110 |
-
sources=["upload", "
|
| 111 |
-
image_mode="RGB",
|
| 112 |
-
)
|
| 113 |
-
q_in = gr.Textbox(
|
| 114 |
-
label="Question",
|
| 115 |
-
placeholder="e.g., What colour is the bus?",
|
| 116 |
-
lines=2,
|
| 117 |
-
max_lines=4,
|
| 118 |
-
)
|
| 119 |
-
source_in = gr.Radio(
|
| 120 |
-
CONTROLLER_SOURCES,
|
| 121 |
-
value="auto",
|
| 122 |
-
label="Controller Source",
|
| 123 |
-
)
|
| 124 |
-
dist_in = gr.Radio(
|
| 125 |
-
DISTILLED_CHOICES,
|
| 126 |
-
value="auto",
|
| 127 |
-
label="Distilled Gate (if used)",
|
| 128 |
)
|
|
|
|
|
|
|
|
|
|
| 129 |
run_btn = gr.Button("Predict", variant="primary")
|
| 130 |
with gr.Column():
|
| 131 |
ans_out = gr.Textbox(label="Answer", interactive=False, lines=3, max_lines=6)
|
|
@@ -139,17 +71,7 @@ with gr.Blocks(title=TITLE, analytics_enabled=False) as demo:
|
|
| 139 |
api_name="predict",
|
| 140 |
)
|
| 141 |
|
| 142 |
-
# -----------------------------
|
| 143 |
-
# Launch
|
| 144 |
-
# -----------------------------
|
| 145 |
if __name__ == "__main__":
|
| 146 |
-
# Respect $PORT for Spaces/Render/Docker; default to 7860 locally
|
| 147 |
port = int(os.getenv("PORT", "7860"))
|
| 148 |
-
# Queue improves robustness under load
|
| 149 |
demo.queue(concurrency_count=2)
|
| 150 |
-
demo.launch(
|
| 151 |
-
server_name="0.0.0.0",
|
| 152 |
-
server_port=port,
|
| 153 |
-
share=False, # set True only for local quick sharing
|
| 154 |
-
show_error=True,
|
| 155 |
-
)
|
|
|
|
| 1 |
+
# app.py (fixed)
|
| 2 |
+
import os, sys, time, traceback, subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from typing import Tuple, Optional
|
| 4 |
+
from PIL import Image
|
| 5 |
|
|
|
|
| 6 |
try:
|
| 7 |
import gradio as gr
|
| 8 |
+
except ImportError:
|
| 9 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "gradio"])
|
| 10 |
import gradio as gr
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def _make_fallback():
|
| 13 |
+
def _fallback_answer_with_controller(image, question, source="auto", distilled_model="auto"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
return "Placeholder answer (wire your models in controller.py).", "baseline", 0
|
| 15 |
return _fallback_answer_with_controller
|
| 16 |
|
| 17 |
try:
|
| 18 |
+
from controller import answer_with_controller
|
|
|
|
| 19 |
except Exception as e:
|
| 20 |
print(f"[WARN] Using fallback controller because import failed: {e}", flush=True)
|
| 21 |
answer_with_controller = _make_fallback()
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
TITLE = "VQA — Memory + RL Controller"
|
| 24 |
+
DESCRIPTION = "Upload an image, enter a question, and the controller will choose the best decoding strategy."
|
|
|
|
|
|
|
| 25 |
|
| 26 |
CONTROLLER_SOURCES = ["auto", "distilled", "ppo", "baseline"]
|
| 27 |
DISTILLED_CHOICES = ["auto", "logreg", "mlp32"]
|
| 28 |
|
| 29 |
+
def vqa_demo_fn(image: Optional[Image.Image], question: str, source: str, distilled_model: str) -> Tuple[str, str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
if image is None:
|
| 31 |
return "Please upload an image.", "", 0.0
|
| 32 |
question = (question or "").strip()
|
| 33 |
if not question:
|
| 34 |
return "Please enter a question.", "", 0.0
|
|
|
|
|
|
|
| 35 |
t0 = time.perf_counter()
|
| 36 |
try:
|
|
|
|
| 37 |
image_rgb = image.convert("RGB")
|
|
|
|
| 38 |
pred, strategy_name, action_id = answer_with_controller(
|
| 39 |
+
image_rgb, question, source=source, distilled_model=distilled_model
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
|
|
|
| 41 |
latency_ms = (time.perf_counter() - t0) * 1000.0
|
| 42 |
+
return str(pred), f"{action_id} → {strategy_name}", round(latency_ms, 1)
|
|
|
|
|
|
|
|
|
|
| 43 |
except Exception as err:
|
|
|
|
| 44 |
latency_ms = (time.perf_counter() - t0) * 1000.0
|
| 45 |
print("[ERROR] Inference failed:\n" + "".join(traceback.format_exc()), flush=True)
|
| 46 |
return f"Error: {err}", "error", round(latency_ms, 1)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
with gr.Blocks(title=TITLE, analytics_enabled=False) as demo:
|
| 49 |
gr.Markdown(f"### {TITLE}\n{DESCRIPTION}")
|
|
|
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column():
|
| 52 |
img_in = gr.Image(
|
| 53 |
type="pil",
|
| 54 |
label="Image",
|
| 55 |
height=320,
|
| 56 |
+
sources=["upload", "webcam", "clipboard"], # ✅ fixed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
)
|
| 58 |
+
q_in = gr.Textbox(label="Question", placeholder="e.g., What colour is the bus?", lines=2, max_lines=4)
|
| 59 |
+
source_in = gr.Radio(CONTROLLER_SOURCES, value="auto", label="Controller Source")
|
| 60 |
+
dist_in = gr.Radio(DISTILLED_CHOICES, value="auto", label="Distilled Gate (if used)")
|
| 61 |
run_btn = gr.Button("Predict", variant="primary")
|
| 62 |
with gr.Column():
|
| 63 |
ans_out = gr.Textbox(label="Answer", interactive=False, lines=3, max_lines=6)
|
|
|
|
| 71 |
api_name="predict",
|
| 72 |
)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
if __name__ == "__main__":
|
|
|
|
| 75 |
port = int(os.getenv("PORT", "7860"))
|
|
|
|
| 76 |
demo.queue(concurrency_count=2)
|
| 77 |
+
demo.launch(server_name="0.0.0.0", server_port=port, share=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|