Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	
		admin
		
	commited on
		
		
					Commit 
							
							·
						
						6e9a888
	
1
								Parent(s):
							
							b027a5c
								
upd model
Browse files
    	
        model.py
    CHANGED
    
    | @@ -1,8 +1,9 @@ | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            import torchvision.models as models
         | 
|  | |
| 4 | 
             
            from datasets import load_dataset
         | 
| 5 | 
            -
            from utils import MODEL_DIR
         | 
| 6 |  | 
| 7 |  | 
| 8 | 
             
            class EvalNet:
         | 
| @@ -17,7 +18,7 @@ class EvalNet: | |
| 17 | 
             
                    self.m_type, self.input_size = self._model_info(m_ver)
         | 
| 18 |  | 
| 19 | 
             
                    if not hasattr(models, m_ver):
         | 
| 20 | 
            -
                        raise  | 
| 21 |  | 
| 22 | 
             
                    self.model = eval("models.%s()" % m_ver)
         | 
| 23 | 
             
                    linear_output = self._set_outsize()
         | 
| @@ -34,11 +35,15 @@ class EvalNet: | |
| 34 | 
             
                        if ver == bb["ver"]:
         | 
| 35 | 
             
                            return bb
         | 
| 36 |  | 
| 37 | 
            -
                    print(" | 
| 38 | 
             
                    return backbone_list[0]
         | 
| 39 |  | 
| 40 | 
             
                def _model_info(self, m_ver: str):
         | 
| 41 | 
            -
                    backbone_list =  | 
|  | |
|  | |
|  | |
|  | |
| 42 | 
             
                    backbone = self._get_backbone(m_ver, backbone_list)
         | 
| 43 | 
             
                    m_type = str(backbone["type"])
         | 
| 44 | 
             
                    input_size = int(backbone["input_size"])
         | 
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            import torchvision.models as models
         | 
| 4 | 
            +
            from modelscope.msdatasets import MsDataset
         | 
| 5 | 
             
            from datasets import load_dataset
         | 
| 6 | 
            +
            from utils import MODEL_DIR, EN_US
         | 
| 7 |  | 
| 8 |  | 
| 9 | 
             
            class EvalNet:
         | 
|  | |
| 18 | 
             
                    self.m_type, self.input_size = self._model_info(m_ver)
         | 
| 19 |  | 
| 20 | 
             
                    if not hasattr(models, m_ver):
         | 
| 21 | 
            +
                        raise ValueError("不支持的模型")
         | 
| 22 |  | 
| 23 | 
             
                    self.model = eval("models.%s()" % m_ver)
         | 
| 24 | 
             
                    linear_output = self._set_outsize()
         | 
|  | |
| 35 | 
             
                        if ver == bb["ver"]:
         | 
| 36 | 
             
                            return bb
         | 
| 37 |  | 
| 38 | 
            +
                    print("未找到骨干网络名称,使用默认选项 - alexnet。")
         | 
| 39 | 
             
                    return backbone_list[0]
         | 
| 40 |  | 
| 41 | 
             
                def _model_info(self, m_ver: str):
         | 
| 42 | 
            +
                    backbone_list = (
         | 
| 43 | 
            +
                        load_dataset("monetjoe/cv_backbones", split="train")
         | 
| 44 | 
            +
                        if EN_US
         | 
| 45 | 
            +
                        else MsDataset.load("monetjoe/cv_backbones", split="v1")
         | 
| 46 | 
            +
                    )
         | 
| 47 | 
             
                    backbone = self._get_backbone(m_ver, backbone_list)
         | 
| 48 | 
             
                    m_type = str(backbone["type"])
         | 
| 49 | 
             
                    input_size = int(backbone["input_size"])
         | 
