Spaces:
Running
Running
| import os | |
| import torch | |
| import torchvision.transforms as transforms | |
| import huggingface_hub | |
| import modelscope | |
| from PIL import Image | |
| EN_US = os.getenv("LANG") != "zh_CN.UTF-8" | |
| ZH2EN = { | |
| "上传录音 (>40dB)": "Upload a recording (>40dB)", | |
| "选择模型": "Select a model", | |
| "状态栏": "Status", | |
| "音频文件名": "Audio filename", | |
| "唱法识别": "Singing method recognition", | |
| "建议录音时长保持在 5s 左右, 过长会影响识别效率": "It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.", | |
| "引用": "Cite", | |
| "男声 & 美声唱法": "Bel Canto, Male", | |
| "女声 & 美声唱法": "Bel Canto, Female", | |
| "男声 & 民族唱法": "Folk Singing, Male", | |
| "女声 & 民族唱法": "Folk Singing, Female", | |
| } | |
| MODEL_DIR = ( | |
| huggingface_hub.snapshot_download( | |
| "ccmusic-database/bel_canto", | |
| cache_dir="./__pycache__", | |
| ) | |
| if EN_US | |
| else modelscope.snapshot_download( | |
| "ccmusic-database/bel_canto", | |
| cache_dir="./__pycache__", | |
| ) | |
| ) | |
| def _L(zh_txt: str): | |
| return ZH2EN[zh_txt] if EN_US else zh_txt | |
| TRANSLATE = { | |
| "m_bel": _L("男声 & 美声唱法"), | |
| "f_bel": _L("女声 & 美声唱法"), | |
| "m_folk": _L("男声 & 民族唱法"), | |
| "f_folk": _L("女声 & 民族唱法"), | |
| } | |
| CLASSES = list(TRANSLATE.keys()) | |
| TEMP_DIR = "./__pycache__/tmp" | |
| SAMPLE_RATE = 22050 | |
| def toCUDA(x): | |
| if hasattr(x, "cuda"): | |
| if torch.cuda.is_available(): | |
| return x.cuda() | |
| return x | |
| def find_wav_files(folder_path=f"{MODEL_DIR}/examples"): | |
| wav_files = [] | |
| for root, _, files in os.walk(folder_path): | |
| for file in files: | |
| if file.endswith(".wav"): | |
| file_path = os.path.join(root, file) | |
| wav_files.append(file_path) | |
| return wav_files | |
| def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
| output = [] | |
| for entry in os.listdir(model_dir): | |
| # 获取完整路径 | |
| full_path = os.path.join(model_dir, entry) | |
| # 跳过'.git'文件夹 | |
| if entry == ".git" or entry == "examples": | |
| print(f"跳过 .git 或 examples 文件夹: {full_path}") | |
| continue | |
| # 检查条目是文件还是目录 | |
| if os.path.isdir(full_path): | |
| model = os.path.basename(full_path) | |
| if assign_model and assign_model.lower() in model: | |
| output.insert(0, model) | |
| else: | |
| output.append(model) | |
| return output | |
| def embed_img(img_path: str, input_size=224): | |
| transform = transforms.Compose( | |
| [ | |
| transforms.Resize([input_size, input_size]), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| ] | |
| ) | |
| img = Image.open(img_path).convert("RGB") | |
| return transform(img).unsqueeze(0) | |