Spaces:
Running
Running
| import os | |
| import torch | |
| import shutil | |
| import librosa | |
| import warnings | |
| import numpy as np | |
| import gradio as gr | |
| import librosa.display | |
| import matplotlib.pyplot as plt | |
| from collections import Counter | |
| from model import EvalNet | |
| from utils import ( | |
| get_modelist, | |
| find_wav_files, | |
| embed_img, | |
| _L, | |
| SAMPLE_RATE, | |
| TEMP_DIR, | |
| TRANSLATE, | |
| CLASSES, | |
| ) | |
| def wav2mel(audio_path: str, width=1.6, topdb=40): | |
| y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
| non_silents = librosa.effects.split(y, top_db=topdb) | |
| non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
| mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr) | |
| log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) | |
| dur = librosa.get_duration(y=non_silent, sr=sr) | |
| total_frames = log_mel_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_mel_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def wav2cqt(audio_path: str, width=1.6, topdb=40): | |
| y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
| non_silents = librosa.effects.split(y, top_db=topdb) | |
| non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
| cqt_spec = librosa.cqt(y=non_silent, sr=sr) | |
| log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) | |
| dur = librosa.get_duration(y=non_silent, sr=sr) | |
| total_frames = log_cqt_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_cqt_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def wav2chroma(audio_path: str, width=1.6, topdb=40): | |
| y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
| non_silents = librosa.effects.split(y, top_db=topdb) | |
| non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
| chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr) | |
| log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) | |
| dur = librosa.get_duration(y=non_silent, sr=sr) | |
| total_frames = log_chroma_spec.shape[1] | |
| step = int(width * total_frames / dur) | |
| count = int(total_frames / step) | |
| begin = int(0.5 * (total_frames - count * step)) | |
| end = begin + step * count | |
| for i in range(begin, end, step): | |
| librosa.display.specshow(log_chroma_spec[:, i : i + step]) | |
| plt.axis("off") | |
| plt.savefig( | |
| f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg", | |
| bbox_inches="tight", | |
| pad_inches=0.0, | |
| ) | |
| plt.close() | |
| def most_common_element(input_list: list): | |
| counter = Counter(input_list) | |
| mce, _ = counter.most_common(1)[0] | |
| return mce | |
| def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): | |
| status = "Success" | |
| filename = result = None | |
| try: | |
| if os.path.exists(folder_path): | |
| shutil.rmtree(folder_path) | |
| if not wav_path: | |
| raise ValueError("请输入音频!") | |
| spec = log_name.split("_")[-3] | |
| os.makedirs(folder_path, exist_ok=True) | |
| model = EvalNet(log_name, len(TRANSLATE)).model | |
| eval("wav2%s" % spec)(wav_path) | |
| outputs = [] | |
| all_files = os.listdir(folder_path) | |
| for file_name in all_files: | |
| if file_name.lower().endswith(".jpg"): | |
| file_path = os.path.join(folder_path, file_name) | |
| input = embed_img(file_path) | |
| output: torch.Tensor = model(input) | |
| pred_id = torch.max(output.data, 1)[1] | |
| outputs.append(int(pred_id)) | |
| max_count_item = most_common_element(outputs) | |
| shutil.rmtree(folder_path) | |
| filename = os.path.basename(wav_path) | |
| result = TRANSLATE[CLASSES[max_count_item]] | |
| except Exception as e: | |
| status = f"{e}" | |
| return status, filename, result | |
| if __name__ == "__main__": | |
| warnings.filterwarnings("ignore") | |
| models = get_modelist(assign_model="GoogleNet_mel") | |
| examples = [] | |
| example_wavs = find_wav_files() | |
| for wav in example_wavs: | |
| examples.append([wav, models[0]]) | |
| with gr.Blocks() as demo: | |
| gr.Interface( | |
| fn=infer, | |
| inputs=[ | |
| gr.Audio(label=_L("上传录音 (>40dB)"), type="filepath"), | |
| gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), | |
| ], | |
| outputs=[ | |
| gr.Textbox(label=_L("状态栏"), show_copy_button=True), | |
| gr.Textbox(label=_L("音频文件名"), show_copy_button=True), | |
| gr.Textbox(label=_L("唱法识别"), show_copy_button=True), | |
| ], | |
| examples=examples, | |
| cache_examples=False, | |
| allow_flagging="never", | |
| title=_L("建议录音时长保持在 5s 左右, 过长会影响识别效率"), | |
| ) | |
| gr.Markdown( | |
| f"# {_L('引用')}" | |
| + """ | |
| ```bibtex | |
| @article{Zhou-2025, | |
| author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, | |
| title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, | |
| journal = {Transactions of the International Society for Music Information Retrieval}, | |
| volume = {8}, | |
| number = {1}, | |
| pages = {22--38}, | |
| month = {Mar}, | |
| year = {2025}, | |
| url = {https://doi.org/10.5334/tismir.194}, | |
| doi = {10.5334/tismir.194} | |
| } | |
| ```""" | |
| ) | |
| demo.launch() | |