Spaces:
Configuration error
Configuration error
| import logging | |
| import shutil | |
| import time | |
| import editdistance as ed | |
| import torchvision.utils as vutils | |
| from fastai.callbacks.tensorboard import (LearnerTensorboardWriter, | |
| SummaryWriter, TBWriteRequest, | |
| asyncTBWriter) | |
| from fastai.vision import * | |
| from torch.nn.parallel import DistributedDataParallel | |
| from torchvision import transforms | |
| import dataset | |
| from utils import CharsetMapper, Timer, blend_mask | |
| class IterationCallback(LearnerTensorboardWriter): | |
| "A `TrackerCallback` that monitor in each iteration." | |
| def __init__(self, learn:Learner, name:str='model', checpoint_keep_num=5, | |
| show_iters:int=50, eval_iters:int=1000, save_iters:int=20000, | |
| start_iters:int=0, stats_iters=20000): | |
| #if self.learn.rank is not None: time.sleep(self.learn.rank) # keep all event files | |
| super().__init__(learn, base_dir='.', name=learn.path, loss_iters=show_iters, | |
| stats_iters=stats_iters, hist_iters=stats_iters) | |
| self.name, self.bestname = Path(name).name, f'best-{Path(name).name}' | |
| self.show_iters = show_iters | |
| self.eval_iters = eval_iters | |
| self.save_iters = save_iters | |
| self.start_iters = start_iters | |
| self.checpoint_keep_num = checpoint_keep_num | |
| self.metrics_root = 'metrics/' # rewrite | |
| self.timer = Timer() | |
| self.host = self.learn.rank is None or self.learn.rank == 0 | |
| def _write_metrics(self, iteration:int, names:List[str], last_metrics:MetricsList)->None: | |
| "Writes training metrics to Tensorboard." | |
| for i, name in enumerate(names): | |
| if last_metrics is None or len(last_metrics) < i+1: return | |
| scalar_value = last_metrics[i] | |
| self._write_scalar(name=name, scalar_value=scalar_value, iteration=iteration) | |
| def _write_sub_loss(self, iteration:int, last_losses:dict)->None: | |
| "Writes sub loss to Tensorboard." | |
| for name, loss in last_losses.items(): | |
| scalar_value = to_np(loss) | |
| tag = self.metrics_root + name | |
| self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration) | |
| def _save(self, name): | |
| if isinstance(self.learn.model, DistributedDataParallel): | |
| tmp = self.learn.model | |
| self.learn.model = self.learn.model.module | |
| self.learn.save(name) | |
| self.learn.model = tmp | |
| else: self.learn.save(name) | |
| def _validate(self, dl=None, callbacks=None, metrics=None, keeped_items=False): | |
| "Validate on `dl` with potential `callbacks` and `metrics`." | |
| dl = ifnone(dl, self.learn.data.valid_dl) | |
| metrics = ifnone(metrics, self.learn.metrics) | |
| cb_handler = CallbackHandler(ifnone(callbacks, []), metrics) | |
| cb_handler.on_train_begin(1, None, metrics); cb_handler.on_epoch_begin() | |
| if keeped_items: cb_handler.state_dict.update(dict(keeped_items=[])) | |
| val_metrics = validate(self.learn.model, dl, self.loss_func, cb_handler) | |
| cb_handler.on_epoch_end(val_metrics) | |
| if keeped_items: return cb_handler.state_dict['keeped_items'] | |
| else: return cb_handler.state_dict['last_metrics'] | |
| def jump_to_epoch_iter(self, epoch:int, iteration:int)->None: | |
| try: | |
| self.learn.load(f'{self.name}_{epoch}_{iteration}', purge=False) | |
| logging.info(f'Loaded {self.name}_{epoch}_{iteration}') | |
| except: logging.info(f'Model {self.name}_{epoch}_{iteration} not found.') | |
| def on_train_begin(self, n_epochs, **kwargs): | |
| # TODO: can not write graph here | |
| # super().on_train_begin(**kwargs) | |
| self.best = -float('inf') | |
| self.timer.tic() | |
| if self.host: | |
| checkpoint_path = self.learn.path/'checkpoint.yaml' | |
| if checkpoint_path.exists(): | |
| os.remove(checkpoint_path) | |
| open(checkpoint_path, 'w').close() | |
| return {'skip_validate': True, 'iteration':self.start_iters} # disable default validate | |
| def on_batch_begin(self, **kwargs:Any)->None: | |
| self.timer.toc_data() | |
| super().on_batch_begin(**kwargs) | |
| def on_batch_end(self, iteration, epoch, last_loss, smooth_loss, train, **kwargs): | |
| super().on_batch_end(last_loss, iteration, train, **kwargs) | |
| if iteration == 0: return | |
| if iteration % self.loss_iters == 0: | |
| last_losses = self.learn.loss_func.last_losses | |
| self._write_sub_loss(iteration=iteration, last_losses=last_losses) | |
| self.tbwriter.add_scalar(tag=self.metrics_root + 'lr', | |
| scalar_value=self.opt.lr, global_step=iteration) | |
| if iteration % self.show_iters == 0: | |
| log_str = f'epoch {epoch} iter {iteration}: loss = {last_loss:6.4f}, ' \ | |
| f'smooth loss = {smooth_loss:6.4f}' | |
| logging.info(log_str) | |
| # log_str = f'data time = {self.timer.data_diff:.4f}s, runing time = {self.timer.running_diff:.4f}s' | |
| # logging.info(log_str) | |
| if iteration % self.eval_iters == 0: | |
| # TODO: or remove time to on_epoch_end | |
| # 1. Record time | |
| log_str = f'average data time = {self.timer.average_data_time():.4f}s, ' \ | |
| f'average running time = {self.timer.average_running_time():.4f}s' | |
| logging.info(log_str) | |
| # 2. Call validate | |
| last_metrics = self._validate() | |
| self.learn.model.train() | |
| log_str = f'epoch {epoch} iter {iteration}: eval loss = {last_metrics[0]:6.4f}, ' \ | |
| f'ccr = {last_metrics[1]:6.4f}, cwr = {last_metrics[2]:6.4f}, ' \ | |
| f'ted = {last_metrics[3]:6.4f}, ned = {last_metrics[4]:6.4f}, ' \ | |
| f'ted/w = {last_metrics[5]:6.4f}, ' | |
| logging.info(log_str) | |
| names = ['eval_loss', 'ccr', 'cwr', 'ted', 'ned', 'ted/w'] | |
| self._write_metrics(iteration, names, last_metrics) | |
| # 3. Save best model | |
| current = last_metrics[2] | |
| if current is not None and current > self.best: | |
| logging.info(f'Better model found at epoch {epoch}, '\ | |
| f'iter {iteration} with accuracy value: {current:6.4f}.') | |
| self.best = current | |
| self._save(f'{self.bestname}') | |
| if iteration % self.save_iters == 0 and self.host: | |
| logging.info(f'Save model {self.name}_{epoch}_{iteration}') | |
| filename = f'{self.name}_{epoch}_{iteration}' | |
| self._save(filename) | |
| checkpoint_path = self.learn.path/'checkpoint.yaml' | |
| if not checkpoint_path.exists(): | |
| open(checkpoint_path, 'w').close() | |
| with open(checkpoint_path, 'r') as file: | |
| checkpoints = yaml.load(file, Loader=yaml.FullLoader) or dict() | |
| checkpoints['all_checkpoints'] = ( | |
| checkpoints.get('all_checkpoints') or list()) | |
| checkpoints['all_checkpoints'].insert(0, filename) | |
| if len(checkpoints['all_checkpoints']) > self.checpoint_keep_num: | |
| removed_checkpoint = checkpoints['all_checkpoints'].pop() | |
| removed_checkpoint = self.learn.path/self.learn.model_dir/f'{removed_checkpoint}.pth' | |
| os.remove(removed_checkpoint) | |
| checkpoints['current_checkpoint'] = filename | |
| with open(checkpoint_path, 'w') as file: | |
| yaml.dump(checkpoints, file) | |
| self.timer.toc_running() | |
| def on_train_end(self, **kwargs): | |
| #self.learn.load(f'{self.bestname}', purge=False) | |
| pass | |
| def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs)->None: | |
| self._write_embedding(iteration=iteration) | |
| class TextAccuracy(Callback): | |
| _names = ['ccr', 'cwr', 'ted', 'ned', 'ted/w'] | |
| def __init__(self, charset_path, max_length, case_sensitive, model_eval): | |
| self.charset_path = charset_path | |
| self.max_length = max_length | |
| self.case_sensitive = case_sensitive | |
| self.charset = CharsetMapper(charset_path, self.max_length) | |
| self.names = self._names | |
| self.model_eval = model_eval or 'alignment' | |
| assert self.model_eval in ['vision', 'language', 'alignment'] | |
| def on_epoch_begin(self, **kwargs): | |
| self.total_num_char = 0. | |
| self.total_num_word = 0. | |
| self.correct_num_char = 0. | |
| self.correct_num_word = 0. | |
| self.total_ed = 0. | |
| self.total_ned = 0. | |
| def _get_output(self, last_output): | |
| if isinstance(last_output, (tuple, list)): | |
| for res in last_output: | |
| if res['name'] == self.model_eval: output = res | |
| else: output = last_output | |
| return output | |
| def _update_output(self, last_output, items): | |
| if isinstance(last_output, (tuple, list)): | |
| for res in last_output: | |
| if res['name'] == self.model_eval: res.update(items) | |
| else: last_output.update(items) | |
| return last_output | |
| def on_batch_end(self, last_output, last_target, **kwargs): | |
| output = self._get_output(last_output) | |
| logits, pt_lengths = output['logits'], output['pt_lengths'] | |
| pt_text, pt_scores, pt_lengths_ = self.decode(logits) | |
| assert (pt_lengths == pt_lengths_).all(), f'{pt_lengths} != {pt_lengths_} for {pt_text}' | |
| last_output = self._update_output(last_output, {'pt_text':pt_text, 'pt_scores':pt_scores}) | |
| pt_text = [self.charset.trim(t) for t in pt_text] | |
| label = last_target[0] | |
| if label.dim() == 3: label = label.argmax(dim=-1) # one-hot label | |
| gt_text = [self.charset.get_text(l, trim=True) for l in label] | |
| for i in range(len(gt_text)): | |
| if not self.case_sensitive: | |
| gt_text[i], pt_text[i] = gt_text[i].lower(), pt_text[i].lower() | |
| distance = ed.eval(gt_text[i], pt_text[i]) | |
| self.total_ed += distance | |
| self.total_ned += float(distance) / max(len(gt_text[i]), 1) | |
| if gt_text[i] == pt_text[i]: | |
| self.correct_num_word += 1 | |
| self.total_num_word += 1 | |
| for j in range(min(len(gt_text[i]), len(pt_text[i]))): | |
| if gt_text[i][j] == pt_text[i][j]: | |
| self.correct_num_char += 1 | |
| self.total_num_char += len(gt_text[i]) | |
| return {'last_output': last_output} | |
| def on_epoch_end(self, last_metrics, **kwargs): | |
| mets = [self.correct_num_char / self.total_num_char, | |
| self.correct_num_word / self.total_num_word, | |
| self.total_ed, | |
| self.total_ned, | |
| self.total_ed / self.total_num_word] | |
| return add_metrics(last_metrics, mets) | |
| def decode(self, logit): | |
| """ Greed decode """ | |
| # TODO: test running time and decode on GPU | |
| out = F.softmax(logit, dim=2) | |
| pt_text, pt_scores, pt_lengths = [], [], [] | |
| for o in out: | |
| text = self.charset.get_text(o.argmax(dim=1), padding=False, trim=False) | |
| text = text.split(self.charset.null_char)[0] # end at end-token | |
| pt_text.append(text) | |
| pt_scores.append(o.max(dim=1)[0]) | |
| pt_lengths.append(min(len(text) + 1, self.max_length)) # one for end-token | |
| pt_scores = torch.stack(pt_scores) | |
| pt_lengths = pt_scores.new_tensor(pt_lengths, dtype=torch.long) | |
| return pt_text, pt_scores, pt_lengths | |
| class TopKTextAccuracy(TextAccuracy): | |
| _names = ['ccr', 'cwr'] | |
| def __init__(self, k, charset_path, max_length, case_sensitive, model_eval): | |
| self.k = k | |
| self.charset_path = charset_path | |
| self.max_length = max_length | |
| self.case_sensitive = case_sensitive | |
| self.charset = CharsetMapper(charset_path, self.max_length) | |
| self.names = self._names | |
| def on_epoch_begin(self, **kwargs): | |
| self.total_num_char = 0. | |
| self.total_num_word = 0. | |
| self.correct_num_char = 0. | |
| self.correct_num_word = 0. | |
| def on_batch_end(self, last_output, last_target, **kwargs): | |
| logits, pt_lengths = last_output['logits'], last_output['pt_lengths'] | |
| gt_labels, gt_lengths = last_target[:] | |
| for logit, pt_length, label, length in zip(logits, pt_lengths, gt_labels, gt_lengths): | |
| word_flag = True | |
| for i in range(length): | |
| char_logit = logit[i].topk(self.k)[1] | |
| char_label = label[i].argmax(-1) | |
| if char_label in char_logit: self.correct_num_char += 1 | |
| else: word_flag = False | |
| self.total_num_char += 1 | |
| if pt_length == length and word_flag: | |
| self.correct_num_word += 1 | |
| self.total_num_word += 1 | |
| def on_epoch_end(self, last_metrics, **kwargs): | |
| mets = [self.correct_num_char / self.total_num_char, | |
| self.correct_num_word / self.total_num_word, | |
| 0., 0., 0.] | |
| return add_metrics(last_metrics, mets) | |
| class DumpPrediction(LearnerCallback): | |
| def __init__(self, learn, dataset, charset_path, model_eval, image_only=False, debug=False): | |
| super().__init__(learn=learn) | |
| self.debug = debug | |
| self.model_eval = model_eval or 'alignment' | |
| self.image_only = image_only | |
| assert self.model_eval in ['vision', 'language', 'alignment'] | |
| self.dataset, self.root = dataset, Path(self.learn.path)/f'{dataset}-{self.model_eval}' | |
| self.attn_root = self.root/'attn' | |
| self.charset = CharsetMapper(charset_path) | |
| if self.root.exists(): shutil.rmtree(self.root) | |
| self.root.mkdir(), self.attn_root.mkdir() | |
| self.pil = transforms.ToPILImage() | |
| self.tensor = transforms.ToTensor() | |
| size = self.learn.data.img_h, self.learn.data.img_w | |
| self.resize = transforms.Resize(size=size, interpolation=0) | |
| self.c = 0 | |
| def on_batch_end(self, last_input, last_output, last_target, **kwargs): | |
| if isinstance(last_output, (tuple, list)): | |
| for res in last_output: | |
| if res['name'] == self.model_eval: pt_text = res['pt_text'] | |
| if res['name'] == 'vision': attn_scores = res['attn_scores'].detach().cpu() | |
| if res['name'] == self.model_eval: logits = res['logits'] | |
| else: | |
| pt_text = last_output['pt_text'] | |
| attn_scores = last_output['attn_scores'].detach().cpu() | |
| logits = last_output['logits'] | |
| images = last_input[0] if isinstance(last_input, (tuple, list)) else last_input | |
| images = images.detach().cpu() | |
| pt_text = [self.charset.trim(t) for t in pt_text] | |
| gt_label = last_target[0] | |
| if gt_label.dim() == 3: gt_label = gt_label.argmax(dim=-1) # one-hot label | |
| gt_text = [self.charset.get_text(l, trim=True) for l in gt_label] | |
| prediction, false_prediction = [], [] | |
| for gt, pt, image, attn, logit in zip(gt_text, pt_text, images, attn_scores, logits): | |
| prediction.append(f'{gt}\t{pt}\n') | |
| if gt != pt: | |
| if self.debug: | |
| scores = torch.softmax(logit, dim=-1)[:max(len(pt), len(gt)) + 1] | |
| logging.info(f'{self.c} gt {gt}, pt {pt}, logit {logit.shape}, scores {scores.topk(5, dim=-1)}') | |
| false_prediction.append(f'{gt}\t{pt}\n') | |
| image = self.learn.data.denorm(image) | |
| if not self.image_only: | |
| image_np = np.array(self.pil(image)) | |
| attn_pil = [self.pil(a) for a in attn[:, None, :, :]] | |
| attn = [self.tensor(self.resize(a)).repeat(3, 1, 1) for a in attn_pil] | |
| attn_sum = np.array([np.array(a) for a in attn_pil[:len(pt)]]).sum(axis=0) | |
| blended_sum = self.tensor(blend_mask(image_np, attn_sum)) | |
| blended = [self.tensor(blend_mask(image_np, np.array(a))) for a in attn_pil] | |
| save_image = torch.stack([image] + attn + [blended_sum] + blended) | |
| save_image = save_image.view(2, -1, *save_image.shape[1:]) | |
| save_image = save_image.permute(1, 0, 2, 3, 4).flatten(0, 1) | |
| vutils.save_image(save_image, self.attn_root/f'{self.c}_{gt}_{pt}.jpg', | |
| nrow=2, normalize=True, scale_each=True) | |
| else: | |
| self.pil(image).save(self.attn_root/f'{self.c}_{gt}_{pt}.jpg') | |
| self.c += 1 | |
| with open(self.root/f'{self.model_eval}.txt', 'a') as f: f.writelines(prediction) | |
| with open(self.root/f'{self.model_eval}-false.txt', 'a') as f: f.writelines(false_prediction) | |