Spaces:
Configuration error
Configuration error
| # pytorch 1.5.0 | |
| import copy | |
| import math | |
| import warnings | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor | |
| from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter | |
| from torch.nn import functional as F | |
| from torch.nn.init import constant_, xavier_uniform_ | |
| def multi_head_attention_forward(query, # type: Tensor | |
| key, # type: Tensor | |
| value, # type: Tensor | |
| embed_dim_to_check, # type: int | |
| num_heads, # type: int | |
| in_proj_weight, # type: Tensor | |
| in_proj_bias, # type: Tensor | |
| bias_k, # type: Optional[Tensor] | |
| bias_v, # type: Optional[Tensor] | |
| add_zero_attn, # type: bool | |
| dropout_p, # type: float | |
| out_proj_weight, # type: Tensor | |
| out_proj_bias, # type: Tensor | |
| training=True, # type: bool | |
| key_padding_mask=None, # type: Optional[Tensor] | |
| need_weights=True, # type: bool | |
| attn_mask=None, # type: Optional[Tensor] | |
| use_separate_proj_weight=False, # type: bool | |
| q_proj_weight=None, # type: Optional[Tensor] | |
| k_proj_weight=None, # type: Optional[Tensor] | |
| v_proj_weight=None, # type: Optional[Tensor] | |
| static_k=None, # type: Optional[Tensor] | |
| static_v=None # type: Optional[Tensor] | |
| ): | |
| # type: (...) -> Tuple[Tensor, Optional[Tensor]] | |
| r""" | |
| Args: | |
| query, key, value: map a query and a set of key-value pairs to an output. | |
| See "Attention Is All You Need" for more details. | |
| embed_dim_to_check: total dimension of the model. | |
| num_heads: parallel attention heads. | |
| in_proj_weight, in_proj_bias: input projection weight and bias. | |
| bias_k, bias_v: bias of the key and value sequences to be added at dim=0. | |
| add_zero_attn: add a new batch of zeros to the key and | |
| value sequences at dim=1. | |
| dropout_p: probability of an element to be zeroed. | |
| out_proj_weight, out_proj_bias: the output projection weight and bias. | |
| training: apply dropout if is ``True``. | |
| key_padding_mask: if provided, specified padding elements in the key will | |
| be ignored by the attention. This is an binary mask. When the value is True, | |
| the corresponding value on the attention layer will be filled with -inf. | |
| need_weights: output attn_output_weights. | |
| attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
| the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
| use_separate_proj_weight: the function accept the proj. weights for query, key, | |
| and value in different forms. If false, in_proj_weight will be used, which is | |
| a combination of q_proj_weight, k_proj_weight, v_proj_weight. | |
| q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. | |
| static_k, static_v: static key and value used for attention operators. | |
| Shape: | |
| Inputs: | |
| - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
| If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions | |
| will be unchanged. If a BoolTensor is provided, the positions with the | |
| value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
| - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
| 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
| S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked | |
| positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
| while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
| are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
| is provided, it will be added to the attention weight. | |
| - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
| N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
| - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
| N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
| Outputs: | |
| - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
| E is the embedding dimension. | |
| - attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
| L is the target sequence length, S is the source sequence length. | |
| """ | |
| # if not torch.jit.is_scripting(): | |
| # tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, | |
| # out_proj_weight, out_proj_bias) | |
| # if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): | |
| # return handle_torch_function( | |
| # multi_head_attention_forward, tens_ops, query, key, value, | |
| # embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, | |
| # bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, | |
| # out_proj_bias, training=training, key_padding_mask=key_padding_mask, | |
| # need_weights=need_weights, attn_mask=attn_mask, | |
| # use_separate_proj_weight=use_separate_proj_weight, | |
| # q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, | |
| # v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) | |
| tgt_len, bsz, embed_dim = query.size() | |
| assert embed_dim == embed_dim_to_check | |
| assert key.size() == value.size() | |
| head_dim = embed_dim // num_heads | |
| assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" | |
| scaling = float(head_dim) ** -0.5 | |
| if not use_separate_proj_weight: | |
| if torch.equal(query, key) and torch.equal(key, value): | |
| # self-attention | |
| q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) | |
| elif torch.equal(key, value): | |
| # encoder-decoder attention | |
| # This is inline in_proj function with in_proj_weight and in_proj_bias | |
| _b = in_proj_bias | |
| _start = 0 | |
| _end = embed_dim | |
| _w = in_proj_weight[_start:_end, :] | |
| if _b is not None: | |
| _b = _b[_start:_end] | |
| q = F.linear(query, _w, _b) | |
| if key is None: | |
| assert value is None | |
| k = None | |
| v = None | |
| else: | |
| # This is inline in_proj function with in_proj_weight and in_proj_bias | |
| _b = in_proj_bias | |
| _start = embed_dim | |
| _end = None | |
| _w = in_proj_weight[_start:, :] | |
| if _b is not None: | |
| _b = _b[_start:] | |
| k, v = F.linear(key, _w, _b).chunk(2, dim=-1) | |
| else: | |
| # This is inline in_proj function with in_proj_weight and in_proj_bias | |
| _b = in_proj_bias | |
| _start = 0 | |
| _end = embed_dim | |
| _w = in_proj_weight[_start:_end, :] | |
| if _b is not None: | |
| _b = _b[_start:_end] | |
| q = F.linear(query, _w, _b) | |
| # This is inline in_proj function with in_proj_weight and in_proj_bias | |
| _b = in_proj_bias | |
| _start = embed_dim | |
| _end = embed_dim * 2 | |
| _w = in_proj_weight[_start:_end, :] | |
| if _b is not None: | |
| _b = _b[_start:_end] | |
| k = F.linear(key, _w, _b) | |
| # This is inline in_proj function with in_proj_weight and in_proj_bias | |
| _b = in_proj_bias | |
| _start = embed_dim * 2 | |
| _end = None | |
| _w = in_proj_weight[_start:, :] | |
| if _b is not None: | |
| _b = _b[_start:] | |
| v = F.linear(value, _w, _b) | |
| else: | |
| q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) | |
| len1, len2 = q_proj_weight_non_opt.size() | |
| assert len1 == embed_dim and len2 == query.size(-1) | |
| k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) | |
| len1, len2 = k_proj_weight_non_opt.size() | |
| assert len1 == embed_dim and len2 == key.size(-1) | |
| v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) | |
| len1, len2 = v_proj_weight_non_opt.size() | |
| assert len1 == embed_dim and len2 == value.size(-1) | |
| if in_proj_bias is not None: | |
| q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) | |
| k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) | |
| v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) | |
| else: | |
| q = F.linear(query, q_proj_weight_non_opt, in_proj_bias) | |
| k = F.linear(key, k_proj_weight_non_opt, in_proj_bias) | |
| v = F.linear(value, v_proj_weight_non_opt, in_proj_bias) | |
| q = q * scaling | |
| if attn_mask is not None: | |
| assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ | |
| attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ | |
| 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) | |
| if attn_mask.dtype == torch.uint8: | |
| warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
| attn_mask = attn_mask.to(torch.bool) | |
| if attn_mask.dim() == 2: | |
| attn_mask = attn_mask.unsqueeze(0) | |
| if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: | |
| raise RuntimeError('The size of the 2D attn_mask is not correct.') | |
| elif attn_mask.dim() == 3: | |
| if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: | |
| raise RuntimeError('The size of the 3D attn_mask is not correct.') | |
| else: | |
| raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) | |
| # attn_mask's dim is 3 now. | |
| # # convert ByteTensor key_padding_mask to bool | |
| # if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: | |
| # warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
| # key_padding_mask = key_padding_mask.to(torch.bool) | |
| if bias_k is not None and bias_v is not None: | |
| if static_k is None and static_v is None: | |
| k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | |
| v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | |
| if attn_mask is not None: | |
| attn_mask = pad(attn_mask, (0, 1)) | |
| if key_padding_mask is not None: | |
| key_padding_mask = pad(key_padding_mask, (0, 1)) | |
| else: | |
| assert static_k is None, "bias cannot be added to static key." | |
| assert static_v is None, "bias cannot be added to static value." | |
| else: | |
| assert bias_k is None | |
| assert bias_v is None | |
| q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | |
| if k is not None: | |
| k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
| if v is not None: | |
| v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
| if static_k is not None: | |
| assert static_k.size(0) == bsz * num_heads | |
| assert static_k.size(2) == head_dim | |
| k = static_k | |
| if static_v is not None: | |
| assert static_v.size(0) == bsz * num_heads | |
| assert static_v.size(2) == head_dim | |
| v = static_v | |
| src_len = k.size(1) | |
| if key_padding_mask is not None: | |
| assert key_padding_mask.size(0) == bsz | |
| assert key_padding_mask.size(1) == src_len | |
| if add_zero_attn: | |
| src_len += 1 | |
| k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) | |
| v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) | |
| if attn_mask is not None: | |
| attn_mask = pad(attn_mask, (0, 1)) | |
| if key_padding_mask is not None: | |
| key_padding_mask = pad(key_padding_mask, (0, 1)) | |
| attn_output_weights = torch.bmm(q, k.transpose(1, 2)) | |
| assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] | |
| if attn_mask is not None: | |
| if attn_mask.dtype == torch.bool: | |
| attn_output_weights.masked_fill_(attn_mask, float('-inf')) | |
| else: | |
| attn_output_weights += attn_mask | |
| if key_padding_mask is not None: | |
| attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
| attn_output_weights = attn_output_weights.masked_fill( | |
| key_padding_mask.unsqueeze(1).unsqueeze(2), | |
| float('-inf'), | |
| ) | |
| attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) | |
| attn_output_weights = F.softmax( | |
| attn_output_weights, dim=-1) | |
| attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training) | |
| attn_output = torch.bmm(attn_output_weights, v) | |
| assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] | |
| attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
| attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) | |
| if need_weights: | |
| # average attention weights over heads | |
| attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
| return attn_output, attn_output_weights.sum(dim=1) / num_heads | |
| else: | |
| return attn_output, None | |
| class MultiheadAttention(Module): | |
| r"""Allows the model to jointly attend to information | |
| from different representation subspaces. | |
| See reference: Attention Is All You Need | |
| .. math:: | |
| \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O | |
| \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) | |
| Args: | |
| embed_dim: total dimension of the model. | |
| num_heads: parallel attention heads. | |
| dropout: a Dropout layer on attn_output_weights. Default: 0.0. | |
| bias: add bias as module parameter. Default: True. | |
| add_bias_kv: add bias to the key and value sequences at dim=0. | |
| add_zero_attn: add a new batch of zeros to the key and | |
| value sequences at dim=1. | |
| kdim: total number of features in key. Default: None. | |
| vdim: total number of features in value. Default: None. | |
| Note: if kdim and vdim are None, they will be set to embed_dim such that | |
| query, key, and value have the same number of features. | |
| Examples:: | |
| >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) | |
| >>> attn_output, attn_output_weights = multihead_attn(query, key, value) | |
| """ | |
| # __annotations__ = { | |
| # 'bias_k': torch._jit_internal.Optional[torch.Tensor], | |
| # 'bias_v': torch._jit_internal.Optional[torch.Tensor], | |
| # } | |
| __constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight'] | |
| def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): | |
| super(MultiheadAttention, self).__init__() | |
| self.embed_dim = embed_dim | |
| self.kdim = kdim if kdim is not None else embed_dim | |
| self.vdim = vdim if vdim is not None else embed_dim | |
| self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
| if self._qkv_same_embed_dim is False: | |
| self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) | |
| self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) | |
| self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) | |
| self.register_parameter('in_proj_weight', None) | |
| else: | |
| self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) | |
| self.register_parameter('q_proj_weight', None) | |
| self.register_parameter('k_proj_weight', None) | |
| self.register_parameter('v_proj_weight', None) | |
| if bias: | |
| self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) | |
| else: | |
| self.register_parameter('in_proj_bias', None) | |
| self.out_proj = Linear(embed_dim, embed_dim, bias=bias) | |
| if add_bias_kv: | |
| self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) | |
| self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) | |
| else: | |
| self.bias_k = self.bias_v = None | |
| self.add_zero_attn = add_zero_attn | |
| self._reset_parameters() | |
| def _reset_parameters(self): | |
| if self._qkv_same_embed_dim: | |
| xavier_uniform_(self.in_proj_weight) | |
| else: | |
| xavier_uniform_(self.q_proj_weight) | |
| xavier_uniform_(self.k_proj_weight) | |
| xavier_uniform_(self.v_proj_weight) | |
| if self.in_proj_bias is not None: | |
| constant_(self.in_proj_bias, 0.) | |
| constant_(self.out_proj.bias, 0.) | |
| if self.bias_k is not None: | |
| xavier_normal_(self.bias_k) | |
| if self.bias_v is not None: | |
| xavier_normal_(self.bias_v) | |
| def __setstate__(self, state): | |
| # Support loading old MultiheadAttention checkpoints generated by v1.1.0 | |
| if '_qkv_same_embed_dim' not in state: | |
| state['_qkv_same_embed_dim'] = True | |
| super(MultiheadAttention, self).__setstate__(state) | |
| def forward(self, query, key, value, key_padding_mask=None, | |
| need_weights=True, attn_mask=None): | |
| # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] | |
| r""" | |
| Args: | |
| query, key, value: map a query and a set of key-value pairs to an output. | |
| See "Attention Is All You Need" for more details. | |
| key_padding_mask: if provided, specified padding elements in the key will | |
| be ignored by the attention. This is an binary mask. When the value is True, | |
| the corresponding value on the attention layer will be filled with -inf. | |
| need_weights: output attn_output_weights. | |
| attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
| the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
| Shape: | |
| - Inputs: | |
| - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
| the embedding dimension. | |
| - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
| If a ByteTensor is provided, the non-zero positions will be ignored while the position | |
| with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the | |
| value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
| - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
| 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
| S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked | |
| positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
| while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
| is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
| is provided, it will be added to the attention weight. | |
| - Outputs: | |
| - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
| E is the embedding dimension. | |
| - attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
| L is the target sequence length, S is the source sequence length. | |
| """ | |
| if not self._qkv_same_embed_dim: | |
| return multi_head_attention_forward( | |
| query, key, value, self.embed_dim, self.num_heads, | |
| self.in_proj_weight, self.in_proj_bias, | |
| self.bias_k, self.bias_v, self.add_zero_attn, | |
| self.dropout, self.out_proj.weight, self.out_proj.bias, | |
| training=self.training, | |
| key_padding_mask=key_padding_mask, need_weights=need_weights, | |
| attn_mask=attn_mask, use_separate_proj_weight=True, | |
| q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, | |
| v_proj_weight=self.v_proj_weight) | |
| else: | |
| return multi_head_attention_forward( | |
| query, key, value, self.embed_dim, self.num_heads, | |
| self.in_proj_weight, self.in_proj_bias, | |
| self.bias_k, self.bias_v, self.add_zero_attn, | |
| self.dropout, self.out_proj.weight, self.out_proj.bias, | |
| training=self.training, | |
| key_padding_mask=key_padding_mask, need_weights=need_weights, | |
| attn_mask=attn_mask) | |
| class Transformer(Module): | |
| r"""A transformer model. User is able to modify the attributes as needed. The architecture | |
| is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, | |
| Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and | |
| Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information | |
| Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) | |
| model with corresponding parameters. | |
| Args: | |
| d_model: the number of expected features in the encoder/decoder inputs (default=512). | |
| nhead: the number of heads in the multiheadattention models (default=8). | |
| num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6). | |
| num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). | |
| dim_feedforward: the dimension of the feedforward network model (default=2048). | |
| dropout: the dropout value (default=0.1). | |
| activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu). | |
| custom_encoder: custom encoder (default=None). | |
| custom_decoder: custom decoder (default=None). | |
| Examples:: | |
| >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) | |
| >>> src = torch.rand((10, 32, 512)) | |
| >>> tgt = torch.rand((20, 32, 512)) | |
| >>> out = transformer_model(src, tgt) | |
| Note: A full example to apply nn.Transformer module for the word language model is available in | |
| https://github.com/pytorch/examples/tree/master/word_language_model | |
| """ | |
| def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, | |
| num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, | |
| activation="relu", custom_encoder=None, custom_decoder=None): | |
| super(Transformer, self).__init__() | |
| if custom_encoder is not None: | |
| self.encoder = custom_encoder | |
| else: | |
| encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation) | |
| encoder_norm = LayerNorm(d_model) | |
| self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
| if custom_decoder is not None: | |
| self.decoder = custom_decoder | |
| else: | |
| decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation) | |
| decoder_norm = LayerNorm(d_model) | |
| self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) | |
| self._reset_parameters() | |
| self.d_model = d_model | |
| self.nhead = nhead | |
| def forward(self, src, tgt, src_mask=None, tgt_mask=None, | |
| memory_mask=None, src_key_padding_mask=None, | |
| tgt_key_padding_mask=None, memory_key_padding_mask=None): | |
| # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa | |
| r"""Take in and process masked source/target sequences. | |
| Args: | |
| src: the sequence to the encoder (required). | |
| tgt: the sequence to the decoder (required). | |
| src_mask: the additive mask for the src sequence (optional). | |
| tgt_mask: the additive mask for the tgt sequence (optional). | |
| memory_mask: the additive mask for the encoder output (optional). | |
| src_key_padding_mask: the ByteTensor mask for src keys per batch (optional). | |
| tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional). | |
| memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional). | |
| Shape: | |
| - src: :math:`(S, N, E)`. | |
| - tgt: :math:`(T, N, E)`. | |
| - src_mask: :math:`(S, S)`. | |
| - tgt_mask: :math:`(T, T)`. | |
| - memory_mask: :math:`(T, S)`. | |
| - src_key_padding_mask: :math:`(N, S)`. | |
| - tgt_key_padding_mask: :math:`(N, T)`. | |
| - memory_key_padding_mask: :math:`(N, S)`. | |
| Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked | |
| positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
| while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
| are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
| is provided, it will be added to the attention weight. | |
| [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by | |
| the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero | |
| positions will be unchanged. If a BoolTensor is provided, the positions with the | |
| value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
| - output: :math:`(T, N, E)`. | |
| Note: Due to the multi-head attention architecture in the transformer model, | |
| the output sequence length of a transformer is same as the input sequence | |
| (i.e. target) length of the decode. | |
| where S is the source sequence length, T is the target sequence length, N is the | |
| batch size, E is the feature number | |
| Examples: | |
| >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) | |
| """ | |
| if src.size(1) != tgt.size(1): | |
| raise RuntimeError("the batch number of src and tgt must be equal") | |
| if src.size(2) != self.d_model or tgt.size(2) != self.d_model: | |
| raise RuntimeError("the feature number of src and tgt must be equal to d_model") | |
| memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask) | |
| output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, | |
| tgt_key_padding_mask=tgt_key_padding_mask, | |
| memory_key_padding_mask=memory_key_padding_mask) | |
| return output | |
| def generate_square_subsequent_mask(self, sz): | |
| r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). | |
| Unmasked positions are filled with float(0.0). | |
| """ | |
| mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) | |
| mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
| return mask | |
| def _reset_parameters(self): | |
| r"""Initiate parameters in the transformer model.""" | |
| for p in self.parameters(): | |
| if p.dim() > 1: | |
| xavier_uniform_(p) | |
| class TransformerEncoder(Module): | |
| r"""TransformerEncoder is a stack of N encoder layers | |
| Args: | |
| encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
| num_layers: the number of sub-encoder-layers in the encoder (required). | |
| norm: the layer normalization component (optional). | |
| Examples:: | |
| >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) | |
| >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) | |
| >>> src = torch.rand(10, 32, 512) | |
| >>> out = transformer_encoder(src) | |
| """ | |
| __constants__ = ['norm'] | |
| def __init__(self, encoder_layer, num_layers, norm=None): | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = _get_clones(encoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| def forward(self, src, mask=None, src_key_padding_mask=None): | |
| # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor | |
| r"""Pass the input through the encoder layers in turn. | |
| Args: | |
| src: the sequence to the encoder (required). | |
| mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| output = src | |
| for i, mod in enumerate(self.layers): | |
| output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return output | |
| class TransformerDecoder(Module): | |
| r"""TransformerDecoder is a stack of N decoder layers | |
| Args: | |
| decoder_layer: an instance of the TransformerDecoderLayer() class (required). | |
| num_layers: the number of sub-decoder-layers in the decoder (required). | |
| norm: the layer normalization component (optional). | |
| Examples:: | |
| >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
| >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) | |
| >>> memory = torch.rand(10, 32, 512) | |
| >>> tgt = torch.rand(20, 32, 512) | |
| >>> out = transformer_decoder(tgt, memory) | |
| """ | |
| __constants__ = ['norm'] | |
| def __init__(self, decoder_layer, num_layers, norm=None): | |
| super(TransformerDecoder, self).__init__() | |
| self.layers = _get_clones(decoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| def forward(self, tgt, memory, memory2=None, tgt_mask=None, | |
| memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None, | |
| memory_key_padding_mask=None, memory_key_padding_mask2=None): | |
| # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor | |
| r"""Pass the inputs (and mask) through the decoder layer in turn. | |
| Args: | |
| tgt: the sequence to the decoder (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| output = tgt | |
| for mod in self.layers: | |
| output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask, | |
| memory_mask=memory_mask, memory_mask2=memory_mask2, | |
| tgt_key_padding_mask=tgt_key_padding_mask, | |
| memory_key_padding_mask=memory_key_padding_mask, | |
| memory_key_padding_mask2=memory_key_padding_mask2) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return output | |
| class TransformerEncoderLayer(Module): | |
| r"""TransformerEncoderLayer is made up of self-attn and feedforward network. | |
| This standard encoder layer is based on the paper "Attention Is All You Need". | |
| Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, | |
| Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in | |
| Neural Information Processing Systems, pages 6000-6010. Users may modify or implement | |
| in a different way during application. | |
| Args: | |
| d_model: the number of expected features in the input (required). | |
| nhead: the number of heads in the multiheadattention models (required). | |
| dim_feedforward: the dimension of the feedforward network model (default=2048). | |
| dropout: the dropout value (default=0.1). | |
| activation: the activation function of intermediate layer, relu or gelu (default=relu). | |
| Examples:: | |
| >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) | |
| >>> src = torch.rand(10, 32, 512) | |
| >>> out = encoder_layer(src) | |
| """ | |
| def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
| activation="relu", debug=False): | |
| super(TransformerEncoderLayer, self).__init__() | |
| self.debug = debug | |
| self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
| # Implementation of Feedforward model | |
| self.linear1 = Linear(d_model, dim_feedforward) | |
| self.dropout = Dropout(dropout) | |
| self.linear2 = Linear(dim_feedforward, d_model) | |
| self.norm1 = LayerNorm(d_model) | |
| self.norm2 = LayerNorm(d_model) | |
| self.dropout1 = Dropout(dropout) | |
| self.dropout2 = Dropout(dropout) | |
| self.activation = _get_activation_fn(activation) | |
| def __setstate__(self, state): | |
| if 'activation' not in state: | |
| state['activation'] = F.relu | |
| super(TransformerEncoderLayer, self).__setstate__(state) | |
| def forward(self, src, src_mask=None, src_key_padding_mask=None): | |
| # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor | |
| r"""Pass the input through the encoder layer. | |
| Args: | |
| src: the sequence to the encoder layer (required). | |
| src_mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, | |
| key_padding_mask=src_key_padding_mask) | |
| if self.debug: self.attn = attn | |
| src = src + self.dropout1(src2) | |
| src = self.norm1(src) | |
| src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
| src = src + self.dropout2(src2) | |
| src = self.norm2(src) | |
| return src | |
| class TransformerDecoderLayer(Module): | |
| r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. | |
| This standard decoder layer is based on the paper "Attention Is All You Need". | |
| Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, | |
| Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in | |
| Neural Information Processing Systems, pages 6000-6010. Users may modify or implement | |
| in a different way during application. | |
| Args: | |
| d_model: the number of expected features in the input (required). | |
| nhead: the number of heads in the multiheadattention models (required). | |
| dim_feedforward: the dimension of the feedforward network model (default=2048). | |
| dropout: the dropout value (default=0.1). | |
| activation: the activation function of intermediate layer, relu or gelu (default=relu). | |
| Examples:: | |
| >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
| >>> memory = torch.rand(10, 32, 512) | |
| >>> tgt = torch.rand(20, 32, 512) | |
| >>> out = decoder_layer(tgt, memory) | |
| """ | |
| def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
| activation="relu", self_attn=True, siamese=False, debug=False): | |
| super(TransformerDecoderLayer, self).__init__() | |
| self.has_self_attn, self.siamese = self_attn, siamese | |
| self.debug = debug | |
| if self.has_self_attn: | |
| self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
| self.norm1 = LayerNorm(d_model) | |
| self.dropout1 = Dropout(dropout) | |
| self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
| # Implementation of Feedforward model | |
| self.linear1 = Linear(d_model, dim_feedforward) | |
| self.dropout = Dropout(dropout) | |
| self.linear2 = Linear(dim_feedforward, d_model) | |
| self.norm2 = LayerNorm(d_model) | |
| self.norm3 = LayerNorm(d_model) | |
| self.dropout2 = Dropout(dropout) | |
| self.dropout3 = Dropout(dropout) | |
| if self.siamese: | |
| self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout) | |
| self.activation = _get_activation_fn(activation) | |
| def __setstate__(self, state): | |
| if 'activation' not in state: | |
| state['activation'] = F.relu | |
| super(TransformerDecoderLayer, self).__setstate__(state) | |
| def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, | |
| tgt_key_padding_mask=None, memory_key_padding_mask=None, | |
| memory2=None, memory_mask2=None, memory_key_padding_mask2=None): | |
| # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor | |
| r"""Pass the inputs (and mask) through the decoder layer. | |
| Args: | |
| tgt: the sequence to the decoder layer (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| if self.has_self_attn: | |
| tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, | |
| key_padding_mask=tgt_key_padding_mask) | |
| tgt = tgt + self.dropout1(tgt2) | |
| tgt = self.norm1(tgt) | |
| if self.debug: self.attn = attn | |
| tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, | |
| key_padding_mask=memory_key_padding_mask) | |
| if self.debug: self.attn2 = attn2 | |
| if self.siamese: | |
| tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2, | |
| key_padding_mask=memory_key_padding_mask2) | |
| tgt = tgt + self.dropout2(tgt3) | |
| if self.debug: self.attn3 = attn3 | |
| tgt = tgt + self.dropout2(tgt2) | |
| tgt = self.norm2(tgt) | |
| tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
| tgt = tgt + self.dropout3(tgt2) | |
| tgt = self.norm3(tgt) | |
| return tgt | |
| def _get_clones(module, N): | |
| return ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| def _get_activation_fn(activation): | |
| if activation == "relu": | |
| return F.relu | |
| elif activation == "gelu": | |
| return F.gelu | |
| raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) | |
| class PositionalEncoding(nn.Module): | |
| r"""Inject some information about the relative or absolute position of the tokens | |
| in the sequence. The positional encodings have the same dimension as | |
| the embeddings, so that the two can be summed. Here, we use sine and cosine | |
| functions of different frequencies. | |
| .. math:: | |
| \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) | |
| \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) | |
| \text{where pos is the word position and i is the embed idx) | |
| Args: | |
| d_model: the embed dim (required). | |
| dropout: the dropout value (default=0.1). | |
| max_len: the max. length of the incoming sequence (default=5000). | |
| Examples: | |
| >>> pos_encoder = PositionalEncoding(d_model) | |
| """ | |
| def __init__(self, d_model, dropout=0.1, max_len=5000): | |
| super(PositionalEncoding, self).__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| pe = torch.zeros(max_len, d_model) | |
| position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0).transpose(0, 1) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| r"""Inputs of forward function | |
| Args: | |
| x: the sequence fed to the positional encoder model (required). | |
| Shape: | |
| x: [sequence length, batch size, embed dim] | |
| output: [sequence length, batch size, embed dim] | |
| Examples: | |
| >>> output = pos_encoder(x) | |
| """ | |
| x = x + self.pe[:x.size(0), :] | |
| return self.dropout(x) | |
| if __name__ == '__main__': | |
| transformer_model = Transformer(nhead=16, num_encoder_layers=12) | |
| src = torch.rand((10, 32, 512)) | |
| tgt = torch.rand((20, 32, 512)) | |
| out = transformer_model(src, tgt) | |
| print(out) | |