Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,84 @@
|
|
| 1 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 2 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 3 |
-
import torch
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import requests
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
box_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 9 |
-
box_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
outputs = box_model(**inputs)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
inputs = caption_processor(raw_image, return_tensors="pt")
|
| 30 |
-
out = caption_model.generate(**inputs)
|
| 31 |
-
label = caption_processor.decode(out[0], skip_special_tokens=True)
|
| 32 |
-
return {"image label": label, "detections": detections}
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
app.api = True
|
| 40 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
#image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
|
| 10 |
+
#model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')
|
| 11 |
+
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 12 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 13 |
|
| 14 |
+
colors = ["red",
|
| 15 |
+
"orange",
|
| 16 |
+
"yellow",
|
| 17 |
+
"green",
|
| 18 |
+
"blue",
|
| 19 |
+
"indigo",
|
| 20 |
+
"violet",
|
| 21 |
+
"brown",
|
| 22 |
+
"black",
|
| 23 |
+
"slategray",
|
| 24 |
+
]
|
| 25 |
|
| 26 |
+
# Resized image width
|
| 27 |
+
WIDTH = 900
|
|
|
|
| 28 |
|
| 29 |
+
def detect(image):
|
| 30 |
+
print(image)
|
| 31 |
+
width, height = image.size
|
| 32 |
+
ratio = float(WIDTH) / float(width)
|
| 33 |
+
new_h = height * ratio
|
| 34 |
|
| 35 |
+
image = image.resize((int(WIDTH), int(new_h)), Image.Resampling.LANCZOS)
|
| 36 |
+
|
| 37 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
| 38 |
+
outputs = model(**inputs)
|
| 39 |
+
|
| 40 |
+
# convert outputs to COCO API
|
| 41 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 42 |
+
results = image_processor.post_process_object_detection(outputs,threshold=0.9, target_sizes=target_sizes)[0]
|
| 43 |
|
| 44 |
+
draw = ImageDraw.Draw(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# label and the count
|
| 47 |
+
counts = {}
|
| 48 |
+
|
| 49 |
+
for score, label in zip(results["scores"], results["labels"]):
|
| 50 |
+
label_name = model.config.id2label[label.item()]
|
| 51 |
+
if label_name not in counts:
|
| 52 |
+
counts[label_name] = 0
|
| 53 |
+
counts[label_name] += 1
|
| 54 |
+
|
| 55 |
+
count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])}
|
| 56 |
+
label2color = {}
|
| 57 |
+
for idx, label in enumerate(count_results):
|
| 58 |
+
label2color[label] = colors[idx]
|
| 59 |
+
|
| 60 |
+
for label, box in zip(results["labels"], results["boxes"]):
|
| 61 |
+
label_name = model.config.id2label[label.item()]
|
| 62 |
+
|
| 63 |
+
if label_name in count_results:
|
| 64 |
+
box = [round(i, 4) for i in box.tolist()]
|
| 65 |
+
x1, y1, x2, y2 = tuple(box)
|
| 66 |
+
draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2)
|
| 67 |
+
draw.text((x1, y1), label_name, fill="white")
|
| 68 |
+
|
| 69 |
+
df = pd.DataFrame({
|
| 70 |
+
'label': [label for label in count_results],
|
| 71 |
+
'counts': [counts[label] for label in count_results]
|
| 72 |
+
})
|
| 73 |
+
|
| 74 |
+
return image, df, count_results
|
| 75 |
+
|
| 76 |
+
demo = gr.Interface(
|
| 77 |
+
fn=detect,
|
| 78 |
+
inputs=[gr.Image(label="Input image", type="pil")],
|
| 79 |
+
outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False), gr.Textbox(show_label=False)],
|
| 80 |
+
title="FB Object Detection",
|
| 81 |
+
cache_examples=False
|
| 82 |
+
)
|
| 83 |
|
| 84 |
+
demo.launch()
|
|
|
|
|
|