Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
| 1 |
+
Hugging Face's logo
|
| 2 |
+
Hugging Face
|
| 3 |
+
Search models, datasets, users...
|
| 4 |
+
Models
|
| 5 |
+
Datasets
|
| 6 |
+
Spaces
|
| 7 |
+
Posts
|
| 8 |
+
Docs
|
| 9 |
+
Solutions
|
| 10 |
+
Pricing
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
Spaces:
|
| 15 |
+
|
| 16 |
+
Satyacoder
|
| 17 |
+
/
|
| 18 |
+
vision_test
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
like
|
| 22 |
+
0
|
| 23 |
+
App
|
| 24 |
+
Files
|
| 25 |
+
Community
|
| 26 |
+
vision_test
|
| 27 |
+
/
|
| 28 |
+
app.py
|
| 29 |
+
|
| 30 |
+
Satyacoder's picture
|
| 31 |
+
Satyacoder
|
| 32 |
+
Update app.py
|
| 33 |
+
8602d39
|
| 34 |
+
5 months ago
|
| 35 |
+
raw
|
| 36 |
+
history
|
| 37 |
+
blame
|
| 38 |
+
contribute
|
| 39 |
+
delete
|
| 40 |
+
No virus
|
| 41 |
+
1.72 kB
|
| 42 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 43 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 44 |
+
import torch
|
| 45 |
+
from PIL import Image
|
| 46 |
+
import requests
|
| 47 |
import gradio as gr
|
| 48 |
|
| 49 |
+
box_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 50 |
+
box_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 51 |
+
|
| 52 |
+
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 53 |
+
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 54 |
+
|
| 55 |
+
def predict_bounding_boxes(imageurl:str):
|
| 56 |
+
try:
|
| 57 |
+
response = requests.get(imageurl, stream=True)
|
| 58 |
+
response.raise_for_status()
|
| 59 |
+
|
| 60 |
+
image_data = Image.open(response.raw)
|
| 61 |
+
inputs = box_processor(images=image_data, return_tensors="pt")
|
| 62 |
+
outputs = box_model(**inputs)
|
| 63 |
+
|
| 64 |
+
target_sizes = torch.tensor([image_data.size[::-1]])
|
| 65 |
+
results = box_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.70)[0]
|
| 66 |
+
|
| 67 |
+
detections = [{"score": score.item(), "label": box_model.config.id2label[label.item()], "box": box.tolist()} for score, label, box in zip(results["scores"], results["labels"], results["boxes"])]
|
| 68 |
+
|
| 69 |
+
raw_image = image_data.convert('RGB')
|
| 70 |
+
inputs = caption_processor(raw_image, return_tensors="pt")
|
| 71 |
+
out = caption_model.generate(**inputs)
|
| 72 |
+
label = caption_processor.decode(out[0], skip_special_tokens=True)
|
| 73 |
+
return {"image label": label, "detections": detections}
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
|
| 77 |
+
return {"error": str(e)}
|
| 78 |
+
|
| 79 |
+
app = gr.Interface(fn=predict_bounding_boxes, inputs="text", outputs="json")
|
| 80 |
+
app.api = True
|
| 81 |
+
app.launch()
|