Upload tabicl.ipynb
Browse files- tabicl.ipynb +680 -0
tabicl.ipynb
ADDED
|
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"base_uri": "https://localhost:8080/"
|
| 9 |
+
},
|
| 10 |
+
"collapsed": true,
|
| 11 |
+
"id": "PmRSSg__E-qm",
|
| 12 |
+
"outputId": "2aecdb88-1734-46de-b579-9b169e5163b7"
|
| 13 |
+
},
|
| 14 |
+
"outputs": [
|
| 15 |
+
{
|
| 16 |
+
"output_type": "stream",
|
| 17 |
+
"name": "stdout",
|
| 18 |
+
"text": [
|
| 19 |
+
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/103.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.9/103.9 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 20 |
+
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 21 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m160.4/160.4 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 22 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 23 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m57.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 24 |
+
"\u001b[?25h Building wheel for liac-arff (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 25 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m471.4/471.4 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 26 |
+
"\u001b[?25h"
|
| 27 |
+
]
|
| 28 |
+
}
|
| 29 |
+
],
|
| 30 |
+
"source": [
|
| 31 |
+
"!pip install -q tabicl\n",
|
| 32 |
+
"!pip install -q openml\n",
|
| 33 |
+
"!pip install -q kaggle\n",
|
| 34 |
+
"!pip install -q skrub -U"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {
|
| 41 |
+
"colab": {
|
| 42 |
+
"base_uri": "https://localhost:8080/"
|
| 43 |
+
},
|
| 44 |
+
"id": "xTQPIegPezQC",
|
| 45 |
+
"outputId": "3fe90c6b-b82a-468a-a335-587286a93696"
|
| 46 |
+
},
|
| 47 |
+
"outputs": [
|
| 48 |
+
{
|
| 49 |
+
"output_type": "stream",
|
| 50 |
+
"name": "stdout",
|
| 51 |
+
"text": [
|
| 52 |
+
"Mounted at /content/MyDrive\n"
|
| 53 |
+
]
|
| 54 |
+
}
|
| 55 |
+
],
|
| 56 |
+
"source": [
|
| 57 |
+
"from google.colab import drive\n",
|
| 58 |
+
"drive.mount('/content/MyDrive')"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"source": [
|
| 64 |
+
"from typing import Optional\n",
|
| 65 |
+
"import os, json\n",
|
| 66 |
+
"import numpy as np\n",
|
| 67 |
+
"import pandas as pd\n",
|
| 68 |
+
"import torch\n",
|
| 69 |
+
"from skrub import TableVectorizer\n",
|
| 70 |
+
"from tabicl import TabICLClassifier\n",
|
| 71 |
+
"from sklearn.impute import SimpleImputer\n",
|
| 72 |
+
"from sklearn.pipeline import make_pipeline\n",
|
| 73 |
+
"from sklearn.preprocessing import OrdinalEncoder\n",
|
| 74 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score"
|
| 75 |
+
],
|
| 76 |
+
"metadata": {
|
| 77 |
+
"id": "_Ou6aK8ZkReU"
|
| 78 |
+
},
|
| 79 |
+
"execution_count": null,
|
| 80 |
+
"outputs": []
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "markdown",
|
| 84 |
+
"source": [
|
| 85 |
+
"### Custom Softmax"
|
| 86 |
+
],
|
| 87 |
+
"metadata": {
|
| 88 |
+
"id": "NoR1dLt_kcTM"
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"source": [
|
| 94 |
+
"# raw_logits = None\n",
|
| 95 |
+
"# @staticmethod\n",
|
| 96 |
+
"# def hook_softmax(x, axis: int = -1, temperature: float = 0.9):\n",
|
| 97 |
+
"# \"\"\"Compute softmax values with temperature scaling using NumPy.\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"# Parameters\n",
|
| 100 |
+
"# ----------\n",
|
| 101 |
+
"# x : ndarray\n",
|
| 102 |
+
"# Input array of logits.\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"# axis : int, default=-1\n",
|
| 105 |
+
"# Axis along which to compute softmax.\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"# temperature : float, default=0.9\n",
|
| 108 |
+
"# Temperature scaling parameter.\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"# Returns\n",
|
| 111 |
+
"# -------\n",
|
| 112 |
+
"# ndarray\n",
|
| 113 |
+
"# Softmax probabilities along the specified axis, with the same shape as the input.\n",
|
| 114 |
+
"# \"\"\"\n",
|
| 115 |
+
"# global raw_logits\n",
|
| 116 |
+
"# raw_logits = np.copy(x) # save raw logits\n",
|
| 117 |
+
"# x = x / temperature\n",
|
| 118 |
+
"# # Subtract max for numerical stability\n",
|
| 119 |
+
"# x_max = np.max(x, axis=axis, keepdims=True)\n",
|
| 120 |
+
"# e_x = np.exp(x - x_max)\n",
|
| 121 |
+
"# # Compute softmax\n",
|
| 122 |
+
"# return e_x / np.sum(e_x, axis=axis, keepdims=True)\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"# # Replace original softmax with hooked one\n",
|
| 125 |
+
"# TabICLClassifier.softmax = hook_softmax"
|
| 126 |
+
],
|
| 127 |
+
"metadata": {
|
| 128 |
+
"id": "MnL-8godkV5G"
|
| 129 |
+
},
|
| 130 |
+
"execution_count": null,
|
| 131 |
+
"outputs": []
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "markdown",
|
| 135 |
+
"source": [
|
| 136 |
+
"## Conformal Prediction"
|
| 137 |
+
],
|
| 138 |
+
"metadata": {
|
| 139 |
+
"id": "wgxFkG3Fj9kD"
|
| 140 |
+
}
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"source": [
|
| 145 |
+
"import numpy as np\n",
|
| 146 |
+
"from numpy._typing import NDArray\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"def confidence_score(probs: NDArray):\n",
|
| 149 |
+
" return np.max(-probs, axis=1)\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"def margin_score(probs: NDArray):\n",
|
| 152 |
+
" sorted_probs = np.sort(probs, axis=1)\n",
|
| 153 |
+
" return sorted_probs[:, -2] - sorted_probs[:, -1]\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"def entropy_score(probs: NDArray, eps = 1e-9):\n",
|
| 156 |
+
" return -np.sum(probs * np.log(probs + eps), axis=1)\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"def nnl_score(probs: NDArray, true_labels: NDArray, eps = 1e-9):\n",
|
| 159 |
+
" return -np.log(probs[np.arange(probs.shape[0]), true_labels] + eps)\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"def ri_score(probs: NDArray, eps = 1e-9):\n",
|
| 162 |
+
" return -np.sum(np.log(probs + eps), axis=1)\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"def lac_conformal_score(probs: NDArray, true_labels: NDArray):\n",
|
| 166 |
+
" \"\"\"\n",
|
| 167 |
+
" Compute the LAC conformal score for a batch of softmax score vectors and true labels.\n",
|
| 168 |
+
"\n",
|
| 169 |
+
" Parameters:\n",
|
| 170 |
+
" - probs: 2D numpy array of shape (n_samples, num_classes), softmax probs for each sample\n",
|
| 171 |
+
" - true_labels: 1D numpy array of shape (n_samples,), true class labels for each sample\n",
|
| 172 |
+
"\n",
|
| 173 |
+
" Returns:\n",
|
| 174 |
+
" - conformal_scores: 1D numpy array of shape (n_samples,), LAC conformal probs for each sample\n",
|
| 175 |
+
" \"\"\"\n",
|
| 176 |
+
" conformal_scores = 1 - probs[np.arange(probs.shape[0]), true_labels]\n",
|
| 177 |
+
" return conformal_scores\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"def aps_conformal_score(probs: NDArray, true_labels: NDArray):\n",
|
| 180 |
+
" \"\"\"\n",
|
| 181 |
+
" Compute the APS conformal score for a batch of softmax score vectors and true labels.\n",
|
| 182 |
+
"\n",
|
| 183 |
+
" Parameters:\n",
|
| 184 |
+
" - probs: 2D numpy array of shape (n_samples, num_classes), softmax probs for each sample\n",
|
| 185 |
+
" - true_labels: 1D numpy array of shape (n_samples,), true class labels for each sample\n",
|
| 186 |
+
"\n",
|
| 187 |
+
" Returns:\n",
|
| 188 |
+
" - conformal_scores: 1D numpy array of shape (n_samples,), APS conformal probs for each sample\n",
|
| 189 |
+
" \"\"\"\n",
|
| 190 |
+
" # Create a mask for each sample: probs >= true_score\n",
|
| 191 |
+
" true_scores = probs[np.arange(probs.shape[0]), true_labels]\n",
|
| 192 |
+
" mask = probs >= true_scores[:, np.newaxis]\n",
|
| 193 |
+
" # Sum along the class axis\n",
|
| 194 |
+
" conformal_scores = np.sum(probs * mask, axis=1)\n",
|
| 195 |
+
"\n",
|
| 196 |
+
" return conformal_scores\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"def compute_quantile(probs: NDArray, calibration_labels, n: int, type = \"lac\", alpha = 0.1):\n",
|
| 199 |
+
" if type == \"lac\":\n",
|
| 200 |
+
" scores = lac_conformal_score(probs, calibration_labels)\n",
|
| 201 |
+
" elif type == \"aps\":\n",
|
| 202 |
+
" scores = aps_conformal_score(probs, calibration_labels)\n",
|
| 203 |
+
" else:\n",
|
| 204 |
+
" raise AttributeError(f\"type {type} is not supported. Use 'lac' or 'aps'\")\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
| 207 |
+
" return np.quantile(scores, q_level, method=\"higher\")\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"def lac_prediction_set(calibration_probs: NDArray, probs: NDArray, calibration_labels: NDArray, alpha = 0.1):\n",
|
| 210 |
+
" n = calibration_labels.shape[0]\n",
|
| 211 |
+
" cal_scores = 1 - calibration_probs[np.arange(calibration_probs.shape[0]), calibration_labels]\n",
|
| 212 |
+
" # Get the score quantile\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
| 215 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
| 216 |
+
"\n",
|
| 217 |
+
" prediction_sets = probs >= (1 - qhat)\n",
|
| 218 |
+
" return prediction_sets\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"def aps_prediction_set(calibration_probs: NDArray, probs: NDArray, calibration_labels: NDArray, alpha = 0.1):\n",
|
| 221 |
+
" # Get scores. calib_X.shape[0] == calib_Y.shape[0] == n\n",
|
| 222 |
+
" n = calibration_labels.shape[0]\n",
|
| 223 |
+
" cal_order = calibration_probs.argsort(1)[:,::-1]\n",
|
| 224 |
+
" # cal_sum = cal_probs[np.arange(n)[:, None], cal_pi].cumsum(axis=1)\n",
|
| 225 |
+
" cal_sum = np.take_along_axis(calibration_probs, cal_order, axis=1).cumsum(axis=1)\n",
|
| 226 |
+
" cal_scores = np.take_along_axis(cal_sum, cal_order.argsort(axis=1), axis=1)[range(n),calibration_labels]\n",
|
| 227 |
+
"\n",
|
| 228 |
+
" # Get the score quantile\n",
|
| 229 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
| 230 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
| 231 |
+
"\n",
|
| 232 |
+
" # Deploy (output=list of length n, each element is tensor of classes)\n",
|
| 233 |
+
" test_order = probs.argsort(1)[:,::-1]\n",
|
| 234 |
+
" test_sum = np.take_along_axis(probs,test_order,axis=1).cumsum(axis=1)\n",
|
| 235 |
+
" prediction_sets = np.take_along_axis(test_sum <= qhat, test_order.argsort(axis=1), axis=1)\n",
|
| 236 |
+
" return prediction_sets\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"def raps_prediction_set(calibration_probs: NDArray, test_probs: NDArray, calibration_labels: NDArray, alpha = 0.1, lam_reg=0.01, k_reg = 5, disallow_zero_sets = False, rand = True):\n",
|
| 239 |
+
" probs = np.concatenate([calibration_probs, test_probs], axis=0)\n",
|
| 240 |
+
" k_reg = min(k_reg, probs.shape[1] - 1)\n",
|
| 241 |
+
" reg_vec = np.array(k_reg * [0,] + (probs.shape[1] - k_reg) * [lam_reg,])[None, :]\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" n = calibration_labels.shape[0]\n",
|
| 244 |
+
" cal_order = calibration_probs.argsort(axis=1)[:,::-1]\n",
|
| 245 |
+
" cal_sort = np.take_along_axis(calibration_probs, cal_order, axis=1)\n",
|
| 246 |
+
" cal_sort_reg = cal_sort + reg_vec\n",
|
| 247 |
+
" cal_true_labels = np.where(cal_order == calibration_labels[:,None])[1]\n",
|
| 248 |
+
" cal_scores = cal_sort_reg.cumsum(axis=1)[np.arange(n), cal_true_labels] - np.random.rand(n) * cal_sort_reg[np.arange(n), cal_true_labels]\n",
|
| 249 |
+
"\n",
|
| 250 |
+
" # Get the score quantile\n",
|
| 251 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
| 252 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
| 253 |
+
"\n",
|
| 254 |
+
" n_test = test_probs.shape[0]\n",
|
| 255 |
+
" test_order = test_probs.argsort(1)[:,::-1]\n",
|
| 256 |
+
" test_sort = np.take_along_axis(test_probs, test_order, axis=1)\n",
|
| 257 |
+
" test_sort_reg = test_sort + reg_vec\n",
|
| 258 |
+
" test_srt_reg_cumsum = test_sort_reg.cumsum(axis=1)\n",
|
| 259 |
+
" indicators = (test_srt_reg_cumsum - np.random.rand(n_test, 1) * test_sort_reg) <= qhat if rand else test_srt_reg_cumsum - test_sort_reg <= qhat\n",
|
| 260 |
+
"\n",
|
| 261 |
+
" if disallow_zero_sets: indicators[:,0] = True\n",
|
| 262 |
+
" prediction_sets = np.take_along_axis(indicators, test_order.argsort(axis=1), axis=1)\n",
|
| 263 |
+
" return prediction_sets\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"def accuracy(y_true, y_pred):\n",
|
| 266 |
+
" return np.mean(y_true == y_pred)\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"def set_size(pred_set):\n",
|
| 269 |
+
" return np.mean([np.sum(ps) for ps in pred_set])\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"def coverage_rate(y_true, pred_set):\n",
|
| 272 |
+
" return pred_set[np.arange(pred_set.shape[0]), y_true].mean()"
|
| 273 |
+
],
|
| 274 |
+
"metadata": {
|
| 275 |
+
"id": "evNphyC0kAJx"
|
| 276 |
+
},
|
| 277 |
+
"execution_count": null,
|
| 278 |
+
"outputs": []
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"cell_type": "markdown",
|
| 282 |
+
"metadata": {
|
| 283 |
+
"id": "C1VFdL01dffC"
|
| 284 |
+
},
|
| 285 |
+
"source": [
|
| 286 |
+
"## Eye Movement"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"cell_type": "code",
|
| 291 |
+
"execution_count": null,
|
| 292 |
+
"metadata": {
|
| 293 |
+
"id": "gQYXkdVuFnNX"
|
| 294 |
+
},
|
| 295 |
+
"outputs": [],
|
| 296 |
+
"source": [
|
| 297 |
+
"import numpy as np\n",
|
| 298 |
+
"import torch\n",
|
| 299 |
+
"import openml\n",
|
| 300 |
+
"from tabicl import TabICLClassifier\n",
|
| 301 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 302 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": null,
|
| 308 |
+
"metadata": {
|
| 309 |
+
"id": "F3ZdlqQUFzdV"
|
| 310 |
+
},
|
| 311 |
+
"outputs": [],
|
| 312 |
+
"source": [
|
| 313 |
+
"dataset = openml.datasets.get_dataset(1044) # or 31 or 40688\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"X, y, _, _ = dataset.get_data(\n",
|
| 316 |
+
" dataset_format=\"dataframe\", target=dataset.default_target_attribute)\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"cell_type": "code",
|
| 323 |
+
"execution_count": null,
|
| 324 |
+
"metadata": {
|
| 325 |
+
"colab": {
|
| 326 |
+
"base_uri": "https://localhost:8080/"
|
| 327 |
+
},
|
| 328 |
+
"id": "yM1CUt2-LahM",
|
| 329 |
+
"outputId": "c5502c00-9642-420e-d558-9e31fea40212"
|
| 330 |
+
},
|
| 331 |
+
"outputs": [
|
| 332 |
+
{
|
| 333 |
+
"name": "stdout",
|
| 334 |
+
"output_type": "stream",
|
| 335 |
+
"text": [
|
| 336 |
+
"Using device: cuda\n"
|
| 337 |
+
]
|
| 338 |
+
}
|
| 339 |
+
],
|
| 340 |
+
"source": [
|
| 341 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
| 342 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
| 343 |
+
")\n",
|
| 344 |
+
"print(\"Using device:\", device)"
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"cell_type": "code",
|
| 349 |
+
"execution_count": null,
|
| 350 |
+
"metadata": {
|
| 351 |
+
"id": "gP-R0-oRFPg0"
|
| 352 |
+
},
|
| 353 |
+
"outputs": [],
|
| 354 |
+
"source": [
|
| 355 |
+
"clf = TabICLClassifier(device=device)\n",
|
| 356 |
+
"clf.fit(X_train, y_train) # this is cheap\n",
|
| 357 |
+
"proba = clf.predict_proba(X_test) # in-context learning happens here"
|
| 358 |
+
]
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"cell_type": "code",
|
| 362 |
+
"execution_count": null,
|
| 363 |
+
"metadata": {
|
| 364 |
+
"colab": {
|
| 365 |
+
"base_uri": "https://localhost:8080/"
|
| 366 |
+
},
|
| 367 |
+
"id": "m4fSOHNOLE3_",
|
| 368 |
+
"outputId": "8925965e-146b-4474-c87f-dcf19579b760"
|
| 369 |
+
},
|
| 370 |
+
"outputs": [
|
| 371 |
+
{
|
| 372 |
+
"name": "stdout",
|
| 373 |
+
"output_type": "stream",
|
| 374 |
+
"text": [
|
| 375 |
+
"ROC AUC: 0.8958693234799394\n",
|
| 376 |
+
"Accuracy: 0.7340036563071298\n"
|
| 377 |
+
]
|
| 378 |
+
}
|
| 379 |
+
],
|
| 380 |
+
"source": [
|
| 381 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test.to_numpy(dtype=int), proba, multi_class='ovo'))\n",
|
| 382 |
+
"y = np.argmax(proba, axis=1)\n",
|
| 383 |
+
"y_pred = clf.y_encoder_.inverse_transform(y)\n",
|
| 384 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"cell_type": "markdown",
|
| 389 |
+
"metadata": {
|
| 390 |
+
"id": "gfQvbD9BdqJC"
|
| 391 |
+
},
|
| 392 |
+
"source": [
|
| 393 |
+
"## Rain in Autralia"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": null,
|
| 399 |
+
"metadata": {
|
| 400 |
+
"colab": {
|
| 401 |
+
"base_uri": "https://localhost:8080/",
|
| 402 |
+
"height": 332
|
| 403 |
+
},
|
| 404 |
+
"id": "2us2QwSIdryV",
|
| 405 |
+
"outputId": "ebc49be5-9dbf-4c8b-ed92-ed16194d20e2"
|
| 406 |
+
},
|
| 407 |
+
"outputs": [
|
| 408 |
+
{
|
| 409 |
+
"name": "stdout",
|
| 410 |
+
"output_type": "stream",
|
| 411 |
+
"text": [
|
| 412 |
+
"Using device: cuda\n",
|
| 413 |
+
"C_train: (93094, 6) object\n",
|
| 414 |
+
"X_train: (93094, 18) object\n",
|
| 415 |
+
"X_test : (29092, 18) object\n",
|
| 416 |
+
"y_train: (93094,) int64\n",
|
| 417 |
+
"y_test: (29092,) int64\n",
|
| 418 |
+
"y_test unique: [0 1 2]\n"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"ename": "AttributeError",
|
| 423 |
+
"evalue": "'numpy.ndarray' object has no attribute 'to_numpy'",
|
| 424 |
+
"output_type": "error",
|
| 425 |
+
"traceback": [
|
| 426 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 427 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 428 |
+
"\u001b[0;32m/tmp/ipython-input-595776624.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpipe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# in-context learning happens here\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"ROC AUC:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmulti_class\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ovo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Accuracy:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 429 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'to_numpy'"
|
| 430 |
+
]
|
| 431 |
+
}
|
| 432 |
+
],
|
| 433 |
+
"source": [
|
| 434 |
+
"from typing import Optional\n",
|
| 435 |
+
"import os, json\n",
|
| 436 |
+
"import numpy as np\n",
|
| 437 |
+
"import pandas as pd\n",
|
| 438 |
+
"import torch\n",
|
| 439 |
+
"from skrub import TableVectorizer\n",
|
| 440 |
+
"from tabicl import TabICLClassifier\n",
|
| 441 |
+
"from sklearn.impute import SimpleImputer\n",
|
| 442 |
+
"from sklearn.pipeline import make_pipeline\n",
|
| 443 |
+
"from sklearn.preprocessing import OrdinalEncoder\n",
|
| 444 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score\n",
|
| 445 |
+
"\n",
|
| 446 |
+
"DATA_DIR = '/content/MyDrive/MyDrive/Datasets/Rain_in_Australia'\n",
|
| 447 |
+
"\n",
|
| 448 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
| 449 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
| 450 |
+
")\n",
|
| 451 |
+
"print(\"Using device:\", device)\n",
|
| 452 |
+
"\n",
|
| 453 |
+
"def load(name) -> Optional[np.ndarray]:\n",
|
| 454 |
+
" p = os.path.join(DATA_DIR, name)\n",
|
| 455 |
+
" return np.load(p, allow_pickle=True) if os.path.exists(p) else None\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"# ---- load arrays ----\n",
|
| 458 |
+
"C_train, N_train, y_train = load('C_train.npy'), load('N_train.npy'), load('y_train.npy')\n",
|
| 459 |
+
"C_val, N_val, y_val = load('C_val.npy'), load('N_val.npy'), load('y_val.npy')\n",
|
| 460 |
+
"C_test, N_test, y_test = load('C_test.npy'), load('N_test.npy'), load('y_test.npy')\n",
|
| 461 |
+
"\n",
|
| 462 |
+
"print(\"C_train:\", C_train.shape, C_train.dtype)\n",
|
| 463 |
+
"# ---- build X by concatenating [C | N] ----\n",
|
| 464 |
+
"def concat_features(C_part, N_part):\n",
|
| 465 |
+
" parts = [p for p in (C_part, N_part) if p is not None]\n",
|
| 466 |
+
" if not parts:\n",
|
| 467 |
+
" raise ValueError(\"No features found (need at least C_* or N_*).\")\n",
|
| 468 |
+
" return np.concatenate(parts, axis=1) if len(parts) > 1 else parts[0]\n",
|
| 469 |
+
"\n",
|
| 470 |
+
"X_train = concat_features(C_train, N_train)\n",
|
| 471 |
+
"X_val = concat_features(C_val, N_val) if (C_val is not None or N_val is not None) else None\n",
|
| 472 |
+
"X_test = concat_features(C_test, N_test)\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"print(\"X_train:\", X_train.shape, X_train.dtype)\n",
|
| 475 |
+
"print(\"X_test :\", X_test.shape, X_test.dtype)\n",
|
| 476 |
+
"print(\"y_train:\", y_train.shape, y_train.dtype)\n",
|
| 477 |
+
"print(\"y_test:\", y_test.shape, y_test.dtype)\n",
|
| 478 |
+
"print(\"y_test unique:\", np.unique(y_test))\n",
|
| 479 |
+
"\n",
|
| 480 |
+
"X_train = pd.DataFrame(X_train)\n",
|
| 481 |
+
"X_test = pd.DataFrame(X_test)\n",
|
| 482 |
+
"\n",
|
| 483 |
+
"pipe = make_pipeline(\n",
|
| 484 |
+
" TableVectorizer(), # Automatically handles various data types\n",
|
| 485 |
+
" TabICLClassifier(device=device)\n",
|
| 486 |
+
")\n",
|
| 487 |
+
"# pipe = TabICLClassifier(device=device)\n",
|
| 488 |
+
"\n",
|
| 489 |
+
"pipe.fit(X_train, y_train) # this is cheap\n",
|
| 490 |
+
"proba = pipe.predict_proba(X_test) # in-context learning happens here\n",
|
| 491 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovo'))\n",
|
| 492 |
+
"y_pred = pipe.predict(X_test)\n",
|
| 493 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
| 494 |
+
]
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"cell_type": "code",
|
| 498 |
+
"execution_count": null,
|
| 499 |
+
"metadata": {
|
| 500 |
+
"colab": {
|
| 501 |
+
"base_uri": "https://localhost:8080/"
|
| 502 |
+
},
|
| 503 |
+
"id": "uWOT-zrmkUir",
|
| 504 |
+
"outputId": "d7efdba9-c5ce-4de8-8b51-ff2d404b1c13"
|
| 505 |
+
},
|
| 506 |
+
"outputs": [
|
| 507 |
+
{
|
| 508 |
+
"name": "stdout",
|
| 509 |
+
"output_type": "stream",
|
| 510 |
+
"text": [
|
| 511 |
+
"ROC AUC: 0.8840392885541616\n",
|
| 512 |
+
"Accuracy: 0.8509212154544205\n"
|
| 513 |
+
]
|
| 514 |
+
}
|
| 515 |
+
],
|
| 516 |
+
"source": [
|
| 517 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovo'))\n",
|
| 518 |
+
"y = np.argmax(proba, axis=1)\n",
|
| 519 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
| 520 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
| 521 |
+
]
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"cell_type": "code",
|
| 525 |
+
"execution_count": null,
|
| 526 |
+
"metadata": {
|
| 527 |
+
"id": "yuukqVGooxwJ"
|
| 528 |
+
},
|
| 529 |
+
"outputs": [],
|
| 530 |
+
"source": [
|
| 531 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovr'))\n",
|
| 532 |
+
"y = np.argmax(proba, axis=1)\n",
|
| 533 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
| 534 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
| 535 |
+
]
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"cell_type": "markdown",
|
| 539 |
+
"metadata": {
|
| 540 |
+
"id": "MupH1gZPiPph"
|
| 541 |
+
},
|
| 542 |
+
"source": [
|
| 543 |
+
"## Banknote auth"
|
| 544 |
+
]
|
| 545 |
+
},
|
| 546 |
+
{
|
| 547 |
+
"cell_type": "code",
|
| 548 |
+
"execution_count": null,
|
| 549 |
+
"metadata": {
|
| 550 |
+
"colab": {
|
| 551 |
+
"base_uri": "https://localhost:8080/"
|
| 552 |
+
},
|
| 553 |
+
"id": "FZmc0osUiPXr",
|
| 554 |
+
"outputId": "ef61624e-08d6-4d6e-f8d7-829c25ef3a7b"
|
| 555 |
+
},
|
| 556 |
+
"outputs": [
|
| 557 |
+
{
|
| 558 |
+
"output_type": "stream",
|
| 559 |
+
"name": "stdout",
|
| 560 |
+
"text": [
|
| 561 |
+
"Using device: cuda\n",
|
| 562 |
+
"X_train: (877, 4) float64\n",
|
| 563 |
+
"X_test : (275, 4) float64\n",
|
| 564 |
+
"y_train: (877,) int64\n",
|
| 565 |
+
"y_test: (275,) int64\n",
|
| 566 |
+
"y_test unique: [0 1]\n"
|
| 567 |
+
]
|
| 568 |
+
}
|
| 569 |
+
],
|
| 570 |
+
"source": [
|
| 571 |
+
"DATA_DIR = '/content/MyDrive/MyDrive/Datasets/banknote_authentication'\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
| 574 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
| 575 |
+
")\n",
|
| 576 |
+
"print(\"Using device:\", device)\n",
|
| 577 |
+
"\n",
|
| 578 |
+
"def load(name) -> Optional[np.ndarray]:\n",
|
| 579 |
+
" p = os.path.join(DATA_DIR, name)\n",
|
| 580 |
+
" return np.load(p, allow_pickle=True) if os.path.exists(p) else None\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"# ---- load arrays ----\n",
|
| 583 |
+
"N_train, y_train = load('N_train.npy'), load('y_train.npy')\n",
|
| 584 |
+
"N_val, y_val = load('N_val.npy'), load('y_val.npy')\n",
|
| 585 |
+
"N_test, y_test = load('N_test.npy'), load('y_test.npy')\n",
|
| 586 |
+
"\n",
|
| 587 |
+
"X_train = N_train\n",
|
| 588 |
+
"X_val = N_val\n",
|
| 589 |
+
"X_test = N_test\n",
|
| 590 |
+
"\n",
|
| 591 |
+
"print(\"X_train:\", X_train.shape, X_train.dtype)\n",
|
| 592 |
+
"print(\"X_test :\", X_test.shape, X_test.dtype)\n",
|
| 593 |
+
"print(\"y_train:\", y_train.shape, y_train.dtype)\n",
|
| 594 |
+
"print(\"y_test:\", y_test.shape, y_test.dtype)\n",
|
| 595 |
+
"print(\"y_test unique:\", np.unique(y_test))\n",
|
| 596 |
+
"\n",
|
| 597 |
+
"X_train = pd.DataFrame(X_train)\n",
|
| 598 |
+
"X_test = pd.DataFrame(X_test)\n",
|
| 599 |
+
"\n",
|
| 600 |
+
"# pipe = make_pipeline(\n",
|
| 601 |
+
"# TableVectorizer(), # Automatically handles various data types\n",
|
| 602 |
+
"# TabICLClassifier(device=device)\n",
|
| 603 |
+
"# )\n",
|
| 604 |
+
"pipe = TabICLClassifier(device=device)\n",
|
| 605 |
+
"\n",
|
| 606 |
+
"pipe.fit(X_train, y_train) # this is cheap\n",
|
| 607 |
+
"cal_proba = pipe.predict_proba(X_val) # in-context learning happens here\n",
|
| 608 |
+
"proba = pipe.predict_proba(X_test) # in-context learning happens here"
|
| 609 |
+
]
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"cell_type": "code",
|
| 613 |
+
"source": [
|
| 614 |
+
"lac_pred_set = lac_prediction_set(cal_proba, proba, y_val)\n",
|
| 615 |
+
"aps_pred_set = aps_prediction_set(cal_proba, proba, y_val)\n",
|
| 616 |
+
"raps_pred_set = raps_prediction_set(cal_proba, proba, y_val)"
|
| 617 |
+
],
|
| 618 |
+
"metadata": {
|
| 619 |
+
"id": "vvGP7d7xkpk7"
|
| 620 |
+
},
|
| 621 |
+
"execution_count": null,
|
| 622 |
+
"outputs": []
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"cell_type": "code",
|
| 626 |
+
"source": [
|
| 627 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba[:,1]))\n",
|
| 628 |
+
"y = np.argmax(proba, axis=1)\n",
|
| 629 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
| 630 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))\n",
|
| 631 |
+
"print(\"SS (LAC):\", set_size(lac_pred_set))\n",
|
| 632 |
+
"print(\"SS (APS):\", set_size(aps_pred_set))\n",
|
| 633 |
+
"print(\"SS (RAPS):\", set_size(raps_pred_set))\n",
|
| 634 |
+
"print(\"CR (LAC):\", coverage_rate(y_test, lac_pred_set))\n",
|
| 635 |
+
"print(\"CR (APS):\", coverage_rate(y_test, aps_pred_set))\n",
|
| 636 |
+
"print(\"CR (RAPS):\", coverage_rate(y_test, raps_pred_set))"
|
| 637 |
+
],
|
| 638 |
+
"metadata": {
|
| 639 |
+
"colab": {
|
| 640 |
+
"base_uri": "https://localhost:8080/"
|
| 641 |
+
},
|
| 642 |
+
"id": "Sp87-tIbkheD",
|
| 643 |
+
"outputId": "ad366dee-6cbf-4c4c-89b7-7754d1c5ea59"
|
| 644 |
+
},
|
| 645 |
+
"execution_count": null,
|
| 646 |
+
"outputs": [
|
| 647 |
+
{
|
| 648 |
+
"output_type": "stream",
|
| 649 |
+
"name": "stdout",
|
| 650 |
+
"text": [
|
| 651 |
+
"ROC AUC: 0.5084913746919533\n",
|
| 652 |
+
"Accuracy: 0.5563636363636364\n",
|
| 653 |
+
"SS (LAC): 1.8254545454545454\n",
|
| 654 |
+
"SS (APS): 2.0\n",
|
| 655 |
+
"SS (RAPS): 1.8581818181818182\n",
|
| 656 |
+
"CR (LAC): 0.9236363636363636\n",
|
| 657 |
+
"CR (APS): 1.0\n",
|
| 658 |
+
"CR (RAPS): 0.9418181818181818\n"
|
| 659 |
+
]
|
| 660 |
+
}
|
| 661 |
+
]
|
| 662 |
+
}
|
| 663 |
+
],
|
| 664 |
+
"metadata": {
|
| 665 |
+
"accelerator": "GPU",
|
| 666 |
+
"colab": {
|
| 667 |
+
"gpuType": "T4",
|
| 668 |
+
"provenance": []
|
| 669 |
+
},
|
| 670 |
+
"kernelspec": {
|
| 671 |
+
"display_name": "Python 3",
|
| 672 |
+
"name": "python3"
|
| 673 |
+
},
|
| 674 |
+
"language_info": {
|
| 675 |
+
"name": "python"
|
| 676 |
+
}
|
| 677 |
+
},
|
| 678 |
+
"nbformat": 4,
|
| 679 |
+
"nbformat_minor": 0
|
| 680 |
+
}
|