Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from sglang import Engine
|
| 7 |
+
from qwen_vl_utils import process_vision_info
|
| 8 |
+
from transformers import AutoProcessor
|
| 9 |
+
|
| 10 |
+
# --- Configuration ---
|
| 11 |
+
CHECKPOINT_PATH = "Qwen/Qwen3-VL-2B-Instruct-FP8"
|
| 12 |
+
|
| 13 |
+
# --- Model and Processor Loading ---
|
| 14 |
+
# Note: This is a heavy operation and will be done once when the Space starts.
|
| 15 |
+
processor = AutoProcessor.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True)
|
| 16 |
+
|
| 17 |
+
# SGLang Engine setup for GPU
|
| 18 |
+
# For a CPU space, this will be extremely slow. A GPU is strongly recommended.
|
| 19 |
+
llm_engine = Engine(
|
| 20 |
+
model_path=CHECKPOINT_PATH,
|
| 21 |
+
enable_multimodal=True,
|
| 22 |
+
mem_fraction_static=0.8,
|
| 23 |
+
tp_size=1, # Set to 1 for a single GPU
|
| 24 |
+
attention_backend="fa3"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# --- Inference Function ---
|
| 28 |
+
def process_and_generate(image_input, text_prompt):
|
| 29 |
+
"""
|
| 30 |
+
Processes the image and text prompt, and generates a response from the model.
|
| 31 |
+
"""
|
| 32 |
+
if image_input is None or text_prompt.strip() == "":
|
| 33 |
+
return "Please provide both an image and a text prompt."
|
| 34 |
+
|
| 35 |
+
# Convert Gradio's image input (numpy array) to a PIL Image
|
| 36 |
+
pil_image = Image.fromarray(image_input)
|
| 37 |
+
|
| 38 |
+
# Prepare the messages payload for the model
|
| 39 |
+
messages = [
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
{"type": "image", "image": pil_image},
|
| 44 |
+
{"type": "text", "text": text_prompt},
|
| 45 |
+
],
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
# Apply the chat template and process vision info
|
| 50 |
+
text = processor.apply_chat_template(
|
| 51 |
+
messages,
|
| 52 |
+
tokenize=False,
|
| 53 |
+
add_generation_prompt=True
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
image_inputs, _ = process_vision_info(
|
| 57 |
+
messages,
|
| 58 |
+
image_patch_size=processor.image_processor.patch_size
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Define sampling parameters
|
| 62 |
+
sampling_params = {"max_new_tokens": 1024, "temperature": 0.7}
|
| 63 |
+
|
| 64 |
+
# Generate the response
|
| 65 |
+
try:
|
| 66 |
+
response = llm_engine.generate(
|
| 67 |
+
prompt=text,
|
| 68 |
+
image_data=image_inputs,
|
| 69 |
+
sampling_params=sampling_params
|
| 70 |
+
)
|
| 71 |
+
return response['text']
|
| 72 |
+
except Exception as e:
|
| 73 |
+
return f"An error occurred during generation: {str(e)}"
|
| 74 |
+
|
| 75 |
+
# --- Gradio Interface ---
|
| 76 |
+
with gr.Blocks() as demo:
|
| 77 |
+
gr.Markdown(
|
| 78 |
+
"""
|
| 79 |
+
# Qwen3-VL-2B-Instruct-FP8 Demo
|
| 80 |
+
This Space demonstrates the capabilities of the Qwen3-VL-2B-Instruct-FP8 model.
|
| 81 |
+
Upload an image, type a question or a command, and see the model's response.
|
| 82 |
+
**Note:** This demo is running on a CPU and may be slow. For better performance, consider upgrading to a GPU Space.
|
| 83 |
+
"""
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
| 89 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="e.g., Describe this image in detail.")
|
| 90 |
+
submit_button = gr.Button("Generate Response")
|
| 91 |
+
with gr.Column():
|
| 92 |
+
output_text = gr.Textbox(label="Model Output", lines=10, interactive=False)
|
| 93 |
+
|
| 94 |
+
submit_button.click(
|
| 95 |
+
fn=process_and_generate,
|
| 96 |
+
inputs=[image_input, text_prompt],
|
| 97 |
+
outputs=output_text
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
gr.Examples(
|
| 101 |
+
examples=[
|
| 102 |
+
["https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/receipt.png", "Read all the text in the image."],
|
| 103 |
+
["https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/what_is_in_the_box.jpg", "What is in the red box?"],
|
| 104 |
+
["https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/chart.png", "What is the value for 'Training & Other'?"],
|
| 105 |
+
],
|
| 106 |
+
inputs=[image_input, text_prompt]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
demo.launch()
|