Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +339 -0
- requirements.txt +18 -0
app.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
IT Support Chatbot Application
|
| 4 |
+
- Converts the original Colab notebook into a deployable Gradio app.
|
| 5 |
+
- Loads data from a local CSV file.
|
| 6 |
+
- Uses environment variables for API keys.
|
| 7 |
+
- Implements a RAG pipeline with LLaMA 3.1, Qdrant, and Hybrid Retrieval.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# --- CELL 1: Imports, Logging & Reproducibility ---
|
| 11 |
+
import os
|
| 12 |
+
import random
|
| 13 |
+
import logging
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import nest_asyncio
|
| 17 |
+
import pandas as pd
|
| 18 |
+
import gradio as gr
|
| 19 |
+
from typing import List
|
| 20 |
+
|
| 21 |
+
# Llama-Index & Transformers
|
| 22 |
+
from llama_index.core import (
|
| 23 |
+
SimpleDirectoryReader, VectorStoreIndex, StorageContext,
|
| 24 |
+
PromptTemplate, Settings, QueryBundle, Document
|
| 25 |
+
)
|
| 26 |
+
from llama_index.core.postprocessor import SentenceTransformerRerank
|
| 27 |
+
from llama_index.core.retrievers import BaseRetriever
|
| 28 |
+
from llama_index.retrievers.bm25 import BM25Retriever
|
| 29 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
| 30 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 31 |
+
from llama_index.core.node_parser import SentenceSplitter
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig
|
| 33 |
+
from huggingface_hub import login
|
| 34 |
+
import qdrant_client
|
| 35 |
+
|
| 36 |
+
# Configure logging
|
| 37 |
+
logging.basicConfig(
|
| 38 |
+
format='%(asctime)s %(levelname)s: %(message)s',
|
| 39 |
+
level=logging.INFO
|
| 40 |
+
)
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
# Apply nest_asyncio for environments like notebooks
|
| 44 |
+
nest_asyncio.apply()
|
| 45 |
+
|
| 46 |
+
# Reproducibility
|
| 47 |
+
SEED = 42
|
| 48 |
+
random.seed(SEED)
|
| 49 |
+
np.random.seed(SEED)
|
| 50 |
+
torch.manual_seed(SEED)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# --- CELL 2: Environment & Qdrant Connection Setup ---
|
| 54 |
+
|
| 55 |
+
if not all([QDRANT_HOST, QDRANT_API_KEY, HF_TOKEN]):
|
| 56 |
+
raise EnvironmentError(
|
| 57 |
+
"Please set QDRANT_HOST, QDRANT_API_KEY, and HF_TOKEN environment variables."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Login to Hugging Face
|
| 61 |
+
login(token=HF_TOKEN)
|
| 62 |
+
|
| 63 |
+
# Initialize Qdrant client
|
| 64 |
+
qdrant = qdrant_client.QdrantClient(
|
| 65 |
+
url=QDRANT_HOST,
|
| 66 |
+
api_key=QDRANT_API_KEY,
|
| 67 |
+
prefer_grpc=False
|
| 68 |
+
)
|
| 69 |
+
COLLECTION_NAME = "it_support_rag"
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# --- CELL 3: Load Dataset & Build Documents ---
|
| 73 |
+
# Load data from a local CSV file.
|
| 74 |
+
# Make sure this CSV file is in the same directory as app.py when deploying.
|
| 75 |
+
CSV_PATH = "data.csv" # Or whatever you name your CSV file
|
| 76 |
+
if not os.path.exists(CSV_PATH):
|
| 77 |
+
raise FileNotFoundError(
|
| 78 |
+
f"The data file was not found at {CSV_PATH}. "
|
| 79 |
+
"Please upload your data CSV and name it correctly."
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
df = pd.read_csv(CSV_PATH, encoding="ISO-8859-1")
|
| 83 |
+
|
| 84 |
+
case_docs: List[Document] = []
|
| 85 |
+
for _, row in df.iterrows():
|
| 86 |
+
text = str(row.get("text_chunk", ""))
|
| 87 |
+
meta = {
|
| 88 |
+
"source_dataset": str(row.get("source_dataset", ""))[:50],
|
| 89 |
+
"category": str(row.get("category", ""))[:100],
|
| 90 |
+
"orig_query": str(row.get("original_query", ""))[:200],
|
| 91 |
+
"orig_solution": str(row.get("original_solution", ""))[:200]
|
| 92 |
+
}
|
| 93 |
+
case_docs.append(Document(text=text, metadata=meta))
|
| 94 |
+
logger.info(f"Loaded {len(case_docs)} documents from {CSV_PATH}.")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# --- CELL 4: Create Vector Index ---
|
| 98 |
+
# Embedding model
|
| 99 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 100 |
+
logger.info(f"Using device: {device}")
|
| 101 |
+
embed_model = HuggingFaceEmbedding(
|
| 102 |
+
model_name="BAAI/bge-large-en-v1.5",
|
| 103 |
+
device=device
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Node parser for chunking
|
| 107 |
+
node_parser = SentenceSplitter(
|
| 108 |
+
chunk_size=1024,
|
| 109 |
+
chunk_overlap=100,
|
| 110 |
+
paragraph_separator="\n\n"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Qdrant-backed vector store
|
| 114 |
+
vector_store = QdrantVectorStore(
|
| 115 |
+
client=qdrant,
|
| 116 |
+
collection_name=COLLECTION_NAME,
|
| 117 |
+
prefer_grpc=False
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Build the index (will upload to Qdrant if collection doesn't exist)
|
| 121 |
+
# Note: This step can be slow the first time it's run.
|
| 122 |
+
logger.info("Initializing VectorStoreIndex...")
|
| 123 |
+
index = VectorStoreIndex.from_documents(
|
| 124 |
+
documents=case_docs,
|
| 125 |
+
storage_context=StorageContext.from_defaults(vector_store=vector_store),
|
| 126 |
+
embed_model=embed_model,
|
| 127 |
+
node_parser=node_parser,
|
| 128 |
+
show_progress=True
|
| 129 |
+
)
|
| 130 |
+
logger.info("VectorStoreIndex initialized successfully.")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# --- CELL 5: Define Hybrid Retriever & Reranker ---
|
| 134 |
+
Settings.llm = None # We will use our own LLM pipeline
|
| 135 |
+
|
| 136 |
+
class HybridRetriever(BaseRetriever):
|
| 137 |
+
def __init__(self, dense, bm25):
|
| 138 |
+
super().__init__()
|
| 139 |
+
self.dense = dense
|
| 140 |
+
self.bm25 = bm25
|
| 141 |
+
def _retrieve(self, query_bundle: QueryBundle) -> List[Document]:
|
| 142 |
+
dense_hits = self.dense.retrieve(query_bundle)
|
| 143 |
+
bm25_hits = self.bm25.retrieve(query_bundle)
|
| 144 |
+
|
| 145 |
+
combined = dense_hits + bm25_hits
|
| 146 |
+
unique = []
|
| 147 |
+
seen = set()
|
| 148 |
+
for hit in combined:
|
| 149 |
+
nid = hit.node.node_id
|
| 150 |
+
if nid not in seen:
|
| 151 |
+
seen.add(nid)
|
| 152 |
+
unique.append(hit)
|
| 153 |
+
return unique
|
| 154 |
+
|
| 155 |
+
# Instantiate retrievers
|
| 156 |
+
dense_retriever = index.as_retriever(similarity_top_k=10)
|
| 157 |
+
bm25_nodes = node_parser.get_nodes_from_documents(case_docs)
|
| 158 |
+
bm25_retriever = BM25Retriever.from_defaults(
|
| 159 |
+
nodes=bm25_nodes,
|
| 160 |
+
similarity_top_k=10,
|
| 161 |
+
)
|
| 162 |
+
hybrid_retriever = HybridRetriever(dense=dense_retriever, bm25=bm25_retriever)
|
| 163 |
+
|
| 164 |
+
reranker = SentenceTransformerRerank(
|
| 165 |
+
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
| 166 |
+
top_n=4,
|
| 167 |
+
device=device
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
query_engine = index.as_query_engine(
|
| 171 |
+
retriever=hybrid_retriever,
|
| 172 |
+
node_postprocessors=[reranker],
|
| 173 |
+
llm=None
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# --- CELL 6: Load & Quantize LLaMA Model ---
|
| 178 |
+
quant_config = BitsAndBytesConfig(
|
| 179 |
+
load_in_4bit=True,
|
| 180 |
+
bnb_4bit_quant_type="nf4",
|
| 181 |
+
bnb_4bit_use_double_quant=True,
|
| 182 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 186 |
+
logger.info(f"Loading model: {MODEL_ID}")
|
| 187 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
|
| 188 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
| 189 |
+
MODEL_ID,
|
| 190 |
+
quantization_config=quant_config,
|
| 191 |
+
device_map="auto"
|
| 192 |
+
)
|
| 193 |
+
logger.info("Model loaded successfully.")
|
| 194 |
+
|
| 195 |
+
generator = pipeline(
|
| 196 |
+
task="text-generation",
|
| 197 |
+
model=llm,
|
| 198 |
+
tokenizer=tokenizer,
|
| 199 |
+
device_map="auto"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# --- CELL 7: Chat Logic and Prompting ---
|
| 204 |
+
SYSTEM_PROMPT = (
|
| 205 |
+
"You are a friendly and helpful Level 0 IT Support Assistant. "
|
| 206 |
+
"Use a conversational tone and guide users step-by-step. "
|
| 207 |
+
"If the user's question lacks details or clarity, ask a concise follow-up question "
|
| 208 |
+
"to gather the information you need before providing a solution. "
|
| 209 |
+
"Once clarified, then:\n"
|
| 210 |
+
"1. Diagnose the problem.\n"
|
| 211 |
+
"2. Provide step-by-step solutions with bullet points.\n"
|
| 212 |
+
"3. Offer additional recommendations or safety warnings.\n"
|
| 213 |
+
"4. End with a polite closing."
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
HDR = {
|
| 217 |
+
"sys": "<|start_header_id|>system<|end_header_id|>",
|
| 218 |
+
"usr": "<|start_header_id|>user<|end_header_id|>",
|
| 219 |
+
"ast": "<|start_header_id|>assistant<|end_header_id|>",
|
| 220 |
+
"eot": "<|eot_id|>"
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
chat_history = []
|
| 224 |
+
GREETINGS = {"hello", "hi", "hey", "good morning", "good afternoon", "good evening"}
|
| 225 |
+
|
| 226 |
+
def format_history(history):
|
| 227 |
+
return "".join(
|
| 228 |
+
f"{HDR['usr']}\n{u}{HDR['eot']}{HDR['ast']}\n{a}{HDR['eot']}"
|
| 229 |
+
for u, a in history
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
def build_prompt(query, context, history):
|
| 233 |
+
if query.lower().strip() in GREETINGS:
|
| 234 |
+
return None, "greeting"
|
| 235 |
+
|
| 236 |
+
words = query.strip().split()
|
| 237 |
+
if len(words) < 3:
|
| 238 |
+
return (
|
| 239 |
+
"Could you provide more detail about what you're experiencing? "
|
| 240 |
+
"Any error messages or steps you've tried will help me assist you."
|
| 241 |
+
), "clarify"
|
| 242 |
+
|
| 243 |
+
context_str = "\n---\n".join(node.text for node in context) if context else "No context provided."
|
| 244 |
+
hist_str = format_history(history[-3:])
|
| 245 |
+
|
| 246 |
+
prompt = (
|
| 247 |
+
f"<|begin_of_text|>"
|
| 248 |
+
f"{HDR['sys']}\n{SYSTEM_PROMPT}{HDR['eot']}"
|
| 249 |
+
f"{hist_str}"
|
| 250 |
+
f"{HDR['usr']}\nContext:\n{context_str}\n\nQuestion: {query}{HDR['eot']}"
|
| 251 |
+
f"{HDR['ast']}\n"
|
| 252 |
+
)
|
| 253 |
+
return prompt, "rag"
|
| 254 |
+
|
| 255 |
+
def chat(query, temperature=0.7, top_p=0.9):
|
| 256 |
+
global chat_history
|
| 257 |
+
prompt, mode = build_prompt(query, [], chat_history)
|
| 258 |
+
|
| 259 |
+
if mode == "greeting":
|
| 260 |
+
reply = "Hello there! How can I help with your IT support question today?"
|
| 261 |
+
chat_history.append((query, reply))
|
| 262 |
+
return reply
|
| 263 |
+
|
| 264 |
+
if mode == "clarify":
|
| 265 |
+
reply = prompt
|
| 266 |
+
chat_history.append((query, reply))
|
| 267 |
+
return reply
|
| 268 |
+
|
| 269 |
+
response = query_engine.query(query)
|
| 270 |
+
context_nodes = response.source_nodes
|
| 271 |
+
|
| 272 |
+
prompt, _ = build_prompt(query, context_nodes, chat_history)
|
| 273 |
+
|
| 274 |
+
gen_args = {
|
| 275 |
+
"do_sample": True,
|
| 276 |
+
"max_new_tokens": 350,
|
| 277 |
+
"temperature": temperature,
|
| 278 |
+
"top_p": top_p,
|
| 279 |
+
"eos_token_id": tokenizer.eos_token_id
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
output = generator(prompt, **gen_args)
|
| 283 |
+
text = output[0]["generated_text"]
|
| 284 |
+
answer = text.split(HDR["ast"])[-1].strip()
|
| 285 |
+
|
| 286 |
+
chat_history.append((query, answer))
|
| 287 |
+
return answer, context_nodes
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
# --- CELL 8: Gradio Interface ---
|
| 291 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="💬 Level 0 IT Support Chatbot") as demo:
|
| 292 |
+
gr.Markdown("### 🤖 Level 0 IT Support Chatbot (RAG + Qdrant + LLaMA3)")
|
| 293 |
+
|
| 294 |
+
with gr.Row():
|
| 295 |
+
with gr.Column(scale=3):
|
| 296 |
+
chatbot = gr.Chatbot(label="Chat", height=500, bubble_full_width=False)
|
| 297 |
+
inp = gr.Textbox(placeholder="Ask your IT support question...", label="Your Message", lines=2)
|
| 298 |
+
with gr.Row():
|
| 299 |
+
send_btn = gr.Button("Send", variant="primary")
|
| 300 |
+
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
| 301 |
+
with gr.Column(scale=1):
|
| 302 |
+
gr.Markdown("### ⚙️ Settings")
|
| 303 |
+
k_slider = gr.Slider(1, 20, value=10, step=1, label="Context Hits (k)")
|
| 304 |
+
temp_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.01, label="Temperature")
|
| 305 |
+
top_p_slider = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
|
| 306 |
+
with gr.Accordion("Show Retrieved Context", open=False):
|
| 307 |
+
context_display = gr.Textbox(label="Retrieved Context", interactive=False, lines=10)
|
| 308 |
+
|
| 309 |
+
def respond(message, history, k, temp, top_p):
|
| 310 |
+
global chat_history
|
| 311 |
+
# Update retriever k value
|
| 312 |
+
dense_retriever.similarity_top_k = k
|
| 313 |
+
bm25_retriever.similarity_top_k = k
|
| 314 |
+
|
| 315 |
+
# Get response and context
|
| 316 |
+
reply, context_nodes = chat(message, temperature=temp, top_p=top_p)
|
| 317 |
+
|
| 318 |
+
# Format context for display
|
| 319 |
+
ctx_text = "\n\n---\n\n".join([f"**Source {i+1} (Score: {node.score:.4f})**\n{node.text}" for i, node in enumerate(context_nodes)])
|
| 320 |
+
|
| 321 |
+
history.append([message, reply])
|
| 322 |
+
return "", history, ctx_text
|
| 323 |
+
|
| 324 |
+
def clear_chat():
|
| 325 |
+
global chat_history
|
| 326 |
+
chat_history = []
|
| 327 |
+
return [], None
|
| 328 |
+
|
| 329 |
+
# Event Listeners
|
| 330 |
+
inp.submit(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 331 |
+
send_btn.click(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 332 |
+
clear_btn.click(clear_chat, None, [chatbot, context_display], queue=False)
|
| 333 |
+
|
| 334 |
+
# --- Main execution block ---
|
| 335 |
+
if __name__ == "__main__":
|
| 336 |
+
# The launch() command will start a web server that serves the interface.
|
| 337 |
+
# It will block the script from exiting.
|
| 338 |
+
logger.info("Launching Gradio interface...")
|
| 339 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
llama-index-core
|
| 2 |
+
llama-index-vector-stores-qdrant
|
| 3 |
+
llama-index-embeddings-huggingface
|
| 4 |
+
llama-index-retrievers-bm25
|
| 5 |
+
llama-index-llms-huggingface
|
| 6 |
+
sentence-transformers
|
| 7 |
+
transformers
|
| 8 |
+
accelerate
|
| 9 |
+
gradio
|
| 10 |
+
qdrant-client
|
| 11 |
+
bitsandbytes
|
| 12 |
+
rouge-score
|
| 13 |
+
bert-score
|
| 14 |
+
evaluate
|
| 15 |
+
nest_asyncio
|
| 16 |
+
torch
|
| 17 |
+
pandas
|
| 18 |
+
numpy
|