brahmanarisetty commited on
Commit
a20119b
·
verified ·
1 Parent(s): f728e3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py CHANGED
@@ -90,6 +90,33 @@ for _, row in df.iterrows():
90
  case_docs.append(Document(text=text, metadata=meta))
91
  logger.info(f"Loaded {len(case_docs)} documents from {CSV_PATH}.")
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  # --- CELL 4: Load prebuilt Vector Index ---
94
  vector_store = QdrantVectorStore(
95
  client=qdrant,
 
90
  case_docs.append(Document(text=text, metadata=meta))
91
  logger.info(f"Loaded {len(case_docs)} documents from {CSV_PATH}.")
92
 
93
+ # --- ADD THIS CODE SNIPPET ---
94
+
95
+ # Define and configure the embedding model
96
+ EMBED_MODEL_ID = "BAAI/bge-small-en-v1.5"
97
+ embed_model = HuggingFaceEmbedding(
98
+ model_name=EMBED_MODEL_ID
99
+ )
100
+
101
+ # Set the global embedding model for Llama-Index
102
+ Settings.embed_model = embed_model
103
+ logger.info(f"✅ Set global embedding model to {EMBED_MODEL_ID}")
104
+
105
+ # --- END OF SNIPPET ---
106
+
107
+ # --- CELL 4: Load prebuilt Vector Index ---
108
+ vector_store = QdrantVectorStore(
109
+ client=qdrant,
110
+ collection_name=COLLECTION_NAME,
111
+ prefer_grpc=False
112
+ )
113
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
114
+
115
+ # This line is now fixed to use the correct API method
116
+ index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
117
+ logger.info("✅ Loaded existing VectorStoreIndex from Qdrant")
118
+
119
+
120
  # --- CELL 4: Load prebuilt Vector Index ---
121
  vector_store = QdrantVectorStore(
122
  client=qdrant,