Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,11 @@
|
|
| 2 |
"""
|
| 3 |
IT Support Chatbot Application
|
| 4 |
- Converts the original Colab notebook into a deployable Gradio app.
|
| 5 |
-
-
|
| 6 |
- Uses environment variables for API keys.
|
| 7 |
- Implements a RAG pipeline with LLaMA 3.1, Qdrant, and Hybrid Retrieval.
|
| 8 |
"""
|
| 9 |
|
| 10 |
-
|
| 11 |
# --- CELL 1: Imports, Logging & Reproducibility ---
|
| 12 |
import os
|
| 13 |
import random
|
|
@@ -41,8 +40,7 @@ logging.basicConfig(
|
|
| 41 |
)
|
| 42 |
logger = logging.getLogger(__name__)
|
| 43 |
|
| 44 |
-
# Apply nest_asyncio for environments like notebooks
|
| 45 |
-
nest_asyncio.apply()
|
| 46 |
|
| 47 |
# Reproducibility
|
| 48 |
SEED = 42
|
|
@@ -50,12 +48,10 @@ random.seed(SEED)
|
|
| 50 |
np.random.seed(SEED)
|
| 51 |
torch.manual_seed(SEED)
|
| 52 |
|
| 53 |
-
# --- CELL 0:
|
| 54 |
-
QDRANT_HOST
|
| 55 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
| 56 |
-
HF_TOKEN
|
| 57 |
-
|
| 58 |
-
# --- CELL 2: Environment & Qdrant Connection Setup ---
|
| 59 |
|
| 60 |
if not all([QDRANT_HOST, QDRANT_API_KEY, HF_TOKEN]):
|
| 61 |
raise EnvironmentError(
|
|
@@ -73,80 +69,48 @@ qdrant = qdrant_client.QdrantClient(
|
|
| 73 |
)
|
| 74 |
COLLECTION_NAME = "it_support_rag"
|
| 75 |
|
| 76 |
-
|
| 77 |
# --- CELL 3: Load Dataset & Build Documents ---
|
| 78 |
-
|
| 79 |
-
# Make sure this CSV file is in the same directory as app.py when deploying.
|
| 80 |
-
CSV_PATH = "data.csv" # Or whatever you name your CSV file
|
| 81 |
if not os.path.exists(CSV_PATH):
|
| 82 |
raise FileNotFoundError(
|
| 83 |
-
f"The data file was not found at {CSV_PATH}. "
|
| 84 |
-
"Please upload your data CSV and name it correctly."
|
| 85 |
)
|
| 86 |
|
| 87 |
df = pd.read_csv(CSV_PATH, encoding="ISO-8859-1")
|
| 88 |
-
|
| 89 |
case_docs: List[Document] = []
|
| 90 |
for _, row in df.iterrows():
|
| 91 |
text = str(row.get("text_chunk", ""))
|
| 92 |
meta = {
|
| 93 |
"source_dataset": str(row.get("source_dataset", ""))[:50],
|
| 94 |
-
"category":
|
| 95 |
-
"orig_query":
|
| 96 |
-
"orig_solution":
|
| 97 |
}
|
| 98 |
case_docs.append(Document(text=text, metadata=meta))
|
| 99 |
logger.info(f"Loaded {len(case_docs)} documents from {CSV_PATH}.")
|
| 100 |
|
| 101 |
-
|
| 102 |
-
# --- CELL 4: Create Vector Index ---
|
| 103 |
-
# Embedding model
|
| 104 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
-
logger.info(f"Using device: {device}")
|
| 106 |
-
embed_model = HuggingFaceEmbedding(
|
| 107 |
-
model_name="BAAI/bge-large-en-v1.5",
|
| 108 |
-
device=device
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
# Node parser for chunking
|
| 112 |
-
node_parser = SentenceSplitter(
|
| 113 |
-
chunk_size=1024,
|
| 114 |
-
chunk_overlap=100,
|
| 115 |
-
paragraph_separator="\n\n"
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# Qdrant-backed vector store
|
| 119 |
vector_store = QdrantVectorStore(
|
| 120 |
client=qdrant,
|
| 121 |
collection_name=COLLECTION_NAME,
|
| 122 |
prefer_grpc=False
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
logger.info("Initializing VectorStoreIndex...")
|
| 128 |
-
index = VectorStoreIndex.from_documents(
|
| 129 |
-
documents=case_docs,
|
| 130 |
-
storage_context=StorageContext.from_defaults(vector_store=vector_store),
|
| 131 |
-
embed_model=embed_model,
|
| 132 |
-
node_parser=node_parser,
|
| 133 |
-
show_progress=True
|
| 134 |
-
)
|
| 135 |
-
logger.info("VectorStoreIndex initialized successfully.")
|
| 136 |
-
|
| 137 |
|
| 138 |
# --- CELL 5: Define Hybrid Retriever & Reranker ---
|
| 139 |
-
Settings.llm = None
|
| 140 |
|
| 141 |
class HybridRetriever(BaseRetriever):
|
| 142 |
def __init__(self, dense, bm25):
|
| 143 |
super().__init__()
|
| 144 |
self.dense = dense
|
| 145 |
self.bm25 = bm25
|
|
|
|
| 146 |
def _retrieve(self, query_bundle: QueryBundle) -> List[Document]:
|
| 147 |
dense_hits = self.dense.retrieve(query_bundle)
|
| 148 |
bm25_hits = self.bm25.retrieve(query_bundle)
|
| 149 |
-
|
| 150 |
combined = dense_hits + bm25_hits
|
| 151 |
unique = []
|
| 152 |
seen = set()
|
|
@@ -159,7 +123,7 @@ class HybridRetriever(BaseRetriever):
|
|
| 159 |
|
| 160 |
# Instantiate retrievers
|
| 161 |
dense_retriever = index.as_retriever(similarity_top_k=10)
|
| 162 |
-
bm25_nodes =
|
| 163 |
bm25_retriever = BM25Retriever.from_defaults(
|
| 164 |
nodes=bm25_nodes,
|
| 165 |
similarity_top_k=10,
|
|
@@ -169,7 +133,7 @@ hybrid_retriever = HybridRetriever(dense=dense_retriever, bm25=bm25_retriever)
|
|
| 169 |
reranker = SentenceTransformerRerank(
|
| 170 |
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
| 171 |
top_n=4,
|
| 172 |
-
device=
|
| 173 |
)
|
| 174 |
|
| 175 |
query_engine = index.as_query_engine(
|
|
@@ -178,7 +142,6 @@ query_engine = index.as_query_engine(
|
|
| 178 |
llm=None
|
| 179 |
)
|
| 180 |
|
| 181 |
-
|
| 182 |
# --- CELL 6: Load & Quantize LLaMA Model ---
|
| 183 |
quant_config = BitsAndBytesConfig(
|
| 184 |
load_in_4bit=True,
|
|
@@ -204,7 +167,6 @@ generator = pipeline(
|
|
| 204 |
device_map="auto"
|
| 205 |
)
|
| 206 |
|
| 207 |
-
|
| 208 |
# --- CELL 7: Chat Logic and Prompting ---
|
| 209 |
SYSTEM_PROMPT = (
|
| 210 |
"You are a friendly and helpful Level 0 IT Support Assistant. "
|
|
@@ -230,26 +192,22 @@ GREETINGS = {"hello", "hi", "hey", "good morning", "good afternoon", "good eveni
|
|
| 230 |
|
| 231 |
def format_history(history):
|
| 232 |
return "".join(
|
| 233 |
-
f"{HDR['usr']}\n{u}{HDR['eot']}{HDR['ast']}\n{a}{HDR['eot']}"
|
| 234 |
-
for u, a in history
|
| 235 |
)
|
| 236 |
|
| 237 |
def build_prompt(query, context, history):
|
| 238 |
if query.lower().strip() in GREETINGS:
|
| 239 |
return None, "greeting"
|
| 240 |
-
|
| 241 |
words = query.strip().split()
|
| 242 |
if len(words) < 3:
|
| 243 |
return (
|
| 244 |
"Could you provide more detail about what you're experiencing? "
|
| 245 |
"Any error messages or steps you've tried will help me assist you."
|
| 246 |
), "clarify"
|
| 247 |
-
|
| 248 |
context_str = "\n---\n".join(node.text for node in context) if context else "No context provided."
|
| 249 |
hist_str = format_history(history[-3:])
|
| 250 |
-
|
| 251 |
prompt = (
|
| 252 |
-
|
| 253 |
f"{HDR['sys']}\n{SYSTEM_PROMPT}{HDR['eot']}"
|
| 254 |
f"{hist_str}"
|
| 255 |
f"{HDR['usr']}\nContext:\n{context_str}\n\nQuestion: {query}{HDR['eot']}"
|
|
@@ -260,22 +218,17 @@ def build_prompt(query, context, history):
|
|
| 260 |
def chat(query, temperature=0.7, top_p=0.9):
|
| 261 |
global chat_history
|
| 262 |
prompt, mode = build_prompt(query, [], chat_history)
|
| 263 |
-
|
| 264 |
if mode == "greeting":
|
| 265 |
reply = "Hello there! How can I help with your IT support question today?"
|
| 266 |
chat_history.append((query, reply))
|
| 267 |
return reply
|
| 268 |
-
|
| 269 |
if mode == "clarify":
|
| 270 |
reply = prompt
|
| 271 |
chat_history.append((query, reply))
|
| 272 |
return reply
|
| 273 |
-
|
| 274 |
response = query_engine.query(query)
|
| 275 |
context_nodes = response.source_nodes
|
| 276 |
-
|
| 277 |
prompt, _ = build_prompt(query, context_nodes, chat_history)
|
| 278 |
-
|
| 279 |
gen_args = {
|
| 280 |
"do_sample": True,
|
| 281 |
"max_new_tokens": 350,
|
|
@@ -283,19 +236,15 @@ def chat(query, temperature=0.7, top_p=0.9):
|
|
| 283 |
"top_p": top_p,
|
| 284 |
"eos_token_id": tokenizer.eos_token_id
|
| 285 |
}
|
| 286 |
-
|
| 287 |
output = generator(prompt, **gen_args)
|
| 288 |
text = output[0]["generated_text"]
|
| 289 |
answer = text.split(HDR["ast"])[-1].strip()
|
| 290 |
-
|
| 291 |
chat_history.append((query, answer))
|
| 292 |
return answer, context_nodes
|
| 293 |
|
| 294 |
-
|
| 295 |
# --- CELL 8: Gradio Interface ---
|
| 296 |
with gr.Blocks(theme=gr.themes.Soft(), title="💬 Level 0 IT Support Chatbot") as demo:
|
| 297 |
gr.Markdown("### 🤖 Level 0 IT Support Chatbot (RAG + Qdrant + LLaMA3)")
|
| 298 |
-
|
| 299 |
with gr.Row():
|
| 300 |
with gr.Column(scale=3):
|
| 301 |
chatbot = gr.Chatbot(label="Chat", height=500, bubble_full_width=False)
|
|
@@ -310,35 +259,25 @@ with gr.Blocks(theme=gr.themes.Soft(), title="💬 Level 0 IT Support Chatbot")
|
|
| 310 |
top_p_slider = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
|
| 311 |
with gr.Accordion("Show Retrieved Context", open=False):
|
| 312 |
context_display = gr.Textbox(label="Retrieved Context", interactive=False, lines=10)
|
| 313 |
-
|
| 314 |
def respond(message, history, k, temp, top_p):
|
| 315 |
global chat_history
|
| 316 |
-
# Update retriever k value
|
| 317 |
dense_retriever.similarity_top_k = k
|
| 318 |
bm25_retriever.similarity_top_k = k
|
| 319 |
-
|
| 320 |
-
# Get response and context
|
| 321 |
reply, context_nodes = chat(message, temperature=temp, top_p=top_p)
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
history.append([message, reply])
|
| 327 |
return "", history, ctx_text
|
| 328 |
-
|
| 329 |
def clear_chat():
|
| 330 |
global chat_history
|
| 331 |
chat_history = []
|
| 332 |
return [], None
|
| 333 |
-
|
| 334 |
-
# Event Listeners
|
| 335 |
inp.submit(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 336 |
send_btn.click(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 337 |
clear_btn.click(clear_chat, None, [chatbot, context_display], queue=False)
|
| 338 |
|
| 339 |
-
# --- Main execution block ---
|
| 340 |
if __name__ == "__main__":
|
| 341 |
-
# The launch() command will start a web server that serves the interface.
|
| 342 |
-
# It will block the script from exiting.
|
| 343 |
logger.info("Launching Gradio interface...")
|
| 344 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 2 |
"""
|
| 3 |
IT Support Chatbot Application
|
| 4 |
- Converts the original Colab notebook into a deployable Gradio app.
|
| 5 |
+
- Connects to a prebuilt Qdrant index instead of rebuilding it on startup.
|
| 6 |
- Uses environment variables for API keys.
|
| 7 |
- Implements a RAG pipeline with LLaMA 3.1, Qdrant, and Hybrid Retrieval.
|
| 8 |
"""
|
| 9 |
|
|
|
|
| 10 |
# --- CELL 1: Imports, Logging & Reproducibility ---
|
| 11 |
import os
|
| 12 |
import random
|
|
|
|
| 40 |
)
|
| 41 |
logger = logging.getLogger(__name__)
|
| 42 |
|
| 43 |
+
# Apply nest_asyncio for environments like notebooks\ nnest_asyncio.apply()
|
|
|
|
| 44 |
|
| 45 |
# Reproducibility
|
| 46 |
SEED = 42
|
|
|
|
| 48 |
np.random.seed(SEED)
|
| 49 |
torch.manual_seed(SEED)
|
| 50 |
|
| 51 |
+
# --- CELL 0: Load secrets from environment variables ---
|
| 52 |
+
QDRANT_HOST = os.getenv("QDRANT_HOST")
|
| 53 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
| 54 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
| 55 |
|
| 56 |
if not all([QDRANT_HOST, QDRANT_API_KEY, HF_TOKEN]):
|
| 57 |
raise EnvironmentError(
|
|
|
|
| 69 |
)
|
| 70 |
COLLECTION_NAME = "it_support_rag"
|
| 71 |
|
|
|
|
| 72 |
# --- CELL 3: Load Dataset & Build Documents ---
|
| 73 |
+
CSV_PATH = "data.csv"
|
|
|
|
|
|
|
| 74 |
if not os.path.exists(CSV_PATH):
|
| 75 |
raise FileNotFoundError(
|
| 76 |
+
f"The data file was not found at {CSV_PATH}. Please upload your data CSV and name it correctly."
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
df = pd.read_csv(CSV_PATH, encoding="ISO-8859-1")
|
|
|
|
| 80 |
case_docs: List[Document] = []
|
| 81 |
for _, row in df.iterrows():
|
| 82 |
text = str(row.get("text_chunk", ""))
|
| 83 |
meta = {
|
| 84 |
"source_dataset": str(row.get("source_dataset", ""))[:50],
|
| 85 |
+
"category": str(row.get("category", ""))[:100],
|
| 86 |
+
"orig_query": str(row.get("original_query", ""))[:200],
|
| 87 |
+
"orig_solution": str(row.get("original_solution", ""))[:200],
|
| 88 |
}
|
| 89 |
case_docs.append(Document(text=text, metadata=meta))
|
| 90 |
logger.info(f"Loaded {len(case_docs)} documents from {CSV_PATH}.")
|
| 91 |
|
| 92 |
+
# --- CELL 4: Load prebuilt Vector Index ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
vector_store = QdrantVectorStore(
|
| 94 |
client=qdrant,
|
| 95 |
collection_name=COLLECTION_NAME,
|
| 96 |
prefer_grpc=False
|
| 97 |
)
|
| 98 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 99 |
+
index = VectorStoreIndex.load_from_storage(storage_context)
|
| 100 |
+
logger.info("✅ Loaded existing VectorStoreIndex from Qdrant")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
# --- CELL 5: Define Hybrid Retriever & Reranker ---
|
| 103 |
+
Settings.llm = None # We will use our own LLM pipeline
|
| 104 |
|
| 105 |
class HybridRetriever(BaseRetriever):
|
| 106 |
def __init__(self, dense, bm25):
|
| 107 |
super().__init__()
|
| 108 |
self.dense = dense
|
| 109 |
self.bm25 = bm25
|
| 110 |
+
|
| 111 |
def _retrieve(self, query_bundle: QueryBundle) -> List[Document]:
|
| 112 |
dense_hits = self.dense.retrieve(query_bundle)
|
| 113 |
bm25_hits = self.bm25.retrieve(query_bundle)
|
|
|
|
| 114 |
combined = dense_hits + bm25_hits
|
| 115 |
unique = []
|
| 116 |
seen = set()
|
|
|
|
| 123 |
|
| 124 |
# Instantiate retrievers
|
| 125 |
dense_retriever = index.as_retriever(similarity_top_k=10)
|
| 126 |
+
bm25_nodes = SentenceSplitter(chunk_size=1024, chunk_overlap=100).get_nodes_from_documents(case_docs)
|
| 127 |
bm25_retriever = BM25Retriever.from_defaults(
|
| 128 |
nodes=bm25_nodes,
|
| 129 |
similarity_top_k=10,
|
|
|
|
| 133 |
reranker = SentenceTransformerRerank(
|
| 134 |
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
| 135 |
top_n=4,
|
| 136 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 137 |
)
|
| 138 |
|
| 139 |
query_engine = index.as_query_engine(
|
|
|
|
| 142 |
llm=None
|
| 143 |
)
|
| 144 |
|
|
|
|
| 145 |
# --- CELL 6: Load & Quantize LLaMA Model ---
|
| 146 |
quant_config = BitsAndBytesConfig(
|
| 147 |
load_in_4bit=True,
|
|
|
|
| 167 |
device_map="auto"
|
| 168 |
)
|
| 169 |
|
|
|
|
| 170 |
# --- CELL 7: Chat Logic and Prompting ---
|
| 171 |
SYSTEM_PROMPT = (
|
| 172 |
"You are a friendly and helpful Level 0 IT Support Assistant. "
|
|
|
|
| 192 |
|
| 193 |
def format_history(history):
|
| 194 |
return "".join(
|
| 195 |
+
f"{HDR['usr']}\n{u}{HDR['eot']}{HDR['ast']}\n{a}{HDR['eot']}" for u, a in history
|
|
|
|
| 196 |
)
|
| 197 |
|
| 198 |
def build_prompt(query, context, history):
|
| 199 |
if query.lower().strip() in GREETINGS:
|
| 200 |
return None, "greeting"
|
|
|
|
| 201 |
words = query.strip().split()
|
| 202 |
if len(words) < 3:
|
| 203 |
return (
|
| 204 |
"Could you provide more detail about what you're experiencing? "
|
| 205 |
"Any error messages or steps you've tried will help me assist you."
|
| 206 |
), "clarify"
|
|
|
|
| 207 |
context_str = "\n---\n".join(node.text for node in context) if context else "No context provided."
|
| 208 |
hist_str = format_history(history[-3:])
|
|
|
|
| 209 |
prompt = (
|
| 210 |
+
"<|begin_of_text|>"
|
| 211 |
f"{HDR['sys']}\n{SYSTEM_PROMPT}{HDR['eot']}"
|
| 212 |
f"{hist_str}"
|
| 213 |
f"{HDR['usr']}\nContext:\n{context_str}\n\nQuestion: {query}{HDR['eot']}"
|
|
|
|
| 218 |
def chat(query, temperature=0.7, top_p=0.9):
|
| 219 |
global chat_history
|
| 220 |
prompt, mode = build_prompt(query, [], chat_history)
|
|
|
|
| 221 |
if mode == "greeting":
|
| 222 |
reply = "Hello there! How can I help with your IT support question today?"
|
| 223 |
chat_history.append((query, reply))
|
| 224 |
return reply
|
|
|
|
| 225 |
if mode == "clarify":
|
| 226 |
reply = prompt
|
| 227 |
chat_history.append((query, reply))
|
| 228 |
return reply
|
|
|
|
| 229 |
response = query_engine.query(query)
|
| 230 |
context_nodes = response.source_nodes
|
|
|
|
| 231 |
prompt, _ = build_prompt(query, context_nodes, chat_history)
|
|
|
|
| 232 |
gen_args = {
|
| 233 |
"do_sample": True,
|
| 234 |
"max_new_tokens": 350,
|
|
|
|
| 236 |
"top_p": top_p,
|
| 237 |
"eos_token_id": tokenizer.eos_token_id
|
| 238 |
}
|
|
|
|
| 239 |
output = generator(prompt, **gen_args)
|
| 240 |
text = output[0]["generated_text"]
|
| 241 |
answer = text.split(HDR["ast"])[-1].strip()
|
|
|
|
| 242 |
chat_history.append((query, answer))
|
| 243 |
return answer, context_nodes
|
| 244 |
|
|
|
|
| 245 |
# --- CELL 8: Gradio Interface ---
|
| 246 |
with gr.Blocks(theme=gr.themes.Soft(), title="💬 Level 0 IT Support Chatbot") as demo:
|
| 247 |
gr.Markdown("### 🤖 Level 0 IT Support Chatbot (RAG + Qdrant + LLaMA3)")
|
|
|
|
| 248 |
with gr.Row():
|
| 249 |
with gr.Column(scale=3):
|
| 250 |
chatbot = gr.Chatbot(label="Chat", height=500, bubble_full_width=False)
|
|
|
|
| 259 |
top_p_slider = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
|
| 260 |
with gr.Accordion("Show Retrieved Context", open=False):
|
| 261 |
context_display = gr.Textbox(label="Retrieved Context", interactive=False, lines=10)
|
|
|
|
| 262 |
def respond(message, history, k, temp, top_p):
|
| 263 |
global chat_history
|
|
|
|
| 264 |
dense_retriever.similarity_top_k = k
|
| 265 |
bm25_retriever.similarity_top_k = k
|
|
|
|
|
|
|
| 266 |
reply, context_nodes = chat(message, temperature=temp, top_p=top_p)
|
| 267 |
+
ctx_text = "\n\n---\n\n".join([
|
| 268 |
+
f"**Source {i+1} (Score: {node.score:.4f})**\n{node.text}"
|
| 269 |
+
for i,node in enumerate(context_nodes)
|
| 270 |
+
])
|
| 271 |
history.append([message, reply])
|
| 272 |
return "", history, ctx_text
|
|
|
|
| 273 |
def clear_chat():
|
| 274 |
global chat_history
|
| 275 |
chat_history = []
|
| 276 |
return [], None
|
|
|
|
|
|
|
| 277 |
inp.submit(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 278 |
send_btn.click(respond, [inp, chatbot, k_slider, temp_slider, top_p_slider], [inp, chatbot, context_display])
|
| 279 |
clear_btn.click(clear_chat, None, [chatbot, context_display], queue=False)
|
| 280 |
|
|
|
|
| 281 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 282 |
logger.info("Launching Gradio interface...")
|
| 283 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|