import numpy as np import torch import librosa import soundfile as sf from rvc.lib.predictors.f0 import RMVPE from transformers import HubertModel def cf0(f0): f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) """Convert F0 to coarse F0.""" f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel = np.clip( (f0_mel - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1, 1, f0_bin - 1, ) return np.rint(f0_mel).astype(int) ref = r"reference.wav" audio, sr = librosa.load(ref, sr=16000) trimmed_len = (len(audio) // 320) * 320 # to prevent feature and pitch offset mismatch audio = audio[:trimmed_len] print("audio", audio.shape) rmvpe_model = RMVPE(device="cpu", sample_rate=16000, hop_size=160) f0 = rmvpe_model.get_f0(audio, filter_radius=0.03) print("f0", f0.shape) f0c = cf0(f0) print("f0c", f0c.shape) cv_path = r"rvc\models\embedders\contentvec" cv_model = HubertModel.from_pretrained(cv_path) spin_path = r"rvc\models\embedders\spin" spin_model = HubertModel.from_pretrained(spin_path) feats = torch.from_numpy(audio).to(torch.float32).to("cpu") feats = torch.nn.functional.pad(feats.unsqueeze(0), (40, 40), mode="reflect") feats = feats.view(1, -1) with torch.no_grad(): cv_feats = cv_model(feats)["last_hidden_state"] cv_feats = cv_feats.squeeze(0).float().cpu().numpy() print("cv", cv_feats.shape) spin_feats = spin_model(feats)["last_hidden_state"] spin_feats = spin_feats.squeeze(0).float().cpu().numpy() print("spin", spin_feats.shape) np.save(r"logs\reference\contentvec\feats.npy", cv_feats) np.save(r"logs\reference\spin\feats.npy", spin_feats) np.save(r"logs\reference\pitch_coarse.npy", f0c) np.save(r"logs\reference\pitch_fine.npy", f0)