Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| from typing import Optional | |
| from rvc.lib.algorithm.commons import sequence_mask | |
| from rvc.lib.algorithm.modules import WaveNet | |
| from rvc.lib.algorithm.normalization import LayerNorm | |
| from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention | |
| class Encoder(torch.nn.Module): | |
| """ | |
| Encoder module for the Transformer model. | |
| Args: | |
| hidden_channels (int): Number of hidden channels in the encoder. | |
| filter_channels (int): Number of filter channels in the feed-forward network. | |
| n_heads (int): Number of attention heads. | |
| n_layers (int): Number of encoder layers. | |
| kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1. | |
| p_dropout (float, optional): Dropout probability. Defaults to 0.0. | |
| window_size (int, optional): Window size for relative positional encoding. Defaults to 10. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_channels: int, | |
| filter_channels: int, | |
| n_heads: int, | |
| n_layers: int, | |
| kernel_size: int = 1, | |
| p_dropout: float = 0.0, | |
| window_size: int = 10, | |
| ): | |
| super().__init__() | |
| self.hidden_channels = hidden_channels | |
| self.n_layers = n_layers | |
| self.drop = torch.nn.Dropout(p_dropout) | |
| self.attn_layers = torch.nn.ModuleList( | |
| [ | |
| MultiHeadAttention( | |
| hidden_channels, | |
| hidden_channels, | |
| n_heads, | |
| p_dropout=p_dropout, | |
| window_size=window_size, | |
| ) | |
| for _ in range(n_layers) | |
| ] | |
| ) | |
| self.norm_layers_1 = torch.nn.ModuleList( | |
| [LayerNorm(hidden_channels) for _ in range(n_layers)] | |
| ) | |
| self.ffn_layers = torch.nn.ModuleList( | |
| [ | |
| FFN( | |
| hidden_channels, | |
| hidden_channels, | |
| filter_channels, | |
| kernel_size, | |
| p_dropout=p_dropout, | |
| ) | |
| for _ in range(n_layers) | |
| ] | |
| ) | |
| self.norm_layers_2 = torch.nn.ModuleList( | |
| [LayerNorm(hidden_channels) for _ in range(n_layers)] | |
| ) | |
| def forward(self, x, x_mask): | |
| attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
| x = x * x_mask | |
| for i in range(self.n_layers): | |
| y = self.attn_layers[i](x, x, attn_mask) | |
| y = self.drop(y) | |
| x = self.norm_layers_1[i](x + y) | |
| y = self.ffn_layers[i](x, x_mask) | |
| y = self.drop(y) | |
| x = self.norm_layers_2[i](x + y) | |
| return x * x_mask | |
| class TextEncoder(torch.nn.Module): | |
| """ | |
| Text Encoder with configurable embedding dimension. | |
| Args: | |
| out_channels (int): Output channels of the encoder. | |
| hidden_channels (int): Hidden channels of the encoder. | |
| filter_channels (int): Filter channels of the encoder. | |
| n_heads (int): Number of attention heads. | |
| n_layers (int): Number of encoder layers. | |
| kernel_size (int): Kernel size of the convolutional layers. | |
| p_dropout (float): Dropout probability. | |
| embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768). | |
| f0 (bool, optional): Whether to use F0 embedding. Defaults to True. | |
| """ | |
| def __init__( | |
| self, | |
| out_channels: int, | |
| hidden_channels: int, | |
| filter_channels: int, | |
| n_heads: int, | |
| n_layers: int, | |
| kernel_size: int, | |
| p_dropout: float, | |
| embedding_dim: int, | |
| f0: bool = True, | |
| ): | |
| super().__init__() | |
| self.hidden_channels = hidden_channels | |
| self.out_channels = out_channels | |
| self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) | |
| self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) | |
| self.emb_pitch = torch.nn.Embedding(256, hidden_channels) if f0 else None | |
| self.encoder = Encoder( | |
| hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout | |
| ) | |
| self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward( | |
| self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor | |
| ): | |
| x = self.emb_phone(phone) | |
| if pitch is not None and self.emb_pitch: | |
| x += self.emb_pitch(pitch) | |
| x *= math.sqrt(self.hidden_channels) | |
| x = self.lrelu(x) | |
| x = x.transpose(1, -1) # [B, H, T] | |
| x_mask = sequence_mask(lengths, x.size(2)).unsqueeze(1).to(x.dtype) | |
| x = self.encoder(x, x_mask) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| return m, logs, x_mask | |
| class PosteriorEncoder(torch.nn.Module): | |
| """ | |
| Posterior Encoder for inferring latent representation. | |
| Args: | |
| in_channels (int): Number of channels in the input. | |
| out_channels (int): Number of channels in the output. | |
| hidden_channels (int): Number of hidden channels in the encoder. | |
| kernel_size (int): Kernel size of the convolutional layers. | |
| dilation_rate (int): Dilation rate of the convolutional layers. | |
| n_layers (int): Number of layers in the encoder. | |
| gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dilation_rate: int, | |
| n_layers: int, | |
| gin_channels: int = 0, | |
| ): | |
| super().__init__() | |
| self.out_channels = out_channels | |
| self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) | |
| self.enc = WaveNet( | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=gin_channels, | |
| ) | |
| self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward( | |
| self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None | |
| ): | |
| x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).to(x.dtype) | |
| x = self.pre(x) * x_mask | |
| x = self.enc(x, x_mask, g=g) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| z = m + torch.randn_like(m) * torch.exp(logs) | |
| z *= x_mask | |
| return z, m, logs, x_mask | |
| def remove_weight_norm(self): | |
| self.enc.remove_weight_norm() | |
| def __prepare_scriptable__(self): | |
| for hook in self.enc._forward_pre_hooks.values(): | |
| if ( | |
| hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
| and hook.__class__.__name__ == "WeightNorm" | |
| ): | |
| torch.nn.utils.remove_weight_norm(self.enc) | |
| return self | |