Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Converts the Baichuan2-7B model in the same format as LLaMA2-7B. | |
| # Usage: python llamafy_baichuan2.py --llama2_json llama2.index.json --input_dir input --output_dir output | |
| # Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py | |
| # Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied | |
| import os | |
| import fire | |
| import json | |
| import torch | |
| from collections import OrderedDict | |
| SHARD_A = "pytorch_model-00001-of-00002.bin" | |
| SHARD_B = "pytorch_model-00002-of-00002.bin" | |
| def llamafy_baichuan2( | |
| llama2_json: str, | |
| input_dir: str, | |
| output_dir: str | |
| ): | |
| baichuan2_state_dict = OrderedDict() | |
| for filepath in os.listdir(input_dir): | |
| if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): | |
| shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") | |
| baichuan2_state_dict.update(shard_weight) | |
| llama2_state_dict = OrderedDict() | |
| total_size = 0 | |
| for key, value in baichuan2_state_dict.items(): | |
| total_size += 2 * value.numel() # half precision | |
| if "W_pack" in key: | |
| llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:4096, :] | |
| llama2_state_dict[key.replace("W_pack", "k_proj")] = value[4096:2*4096, :] | |
| llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*4096:, :] | |
| elif "lm_head" in key: | |
| llama2_state_dict[key] = torch.nn.functional.normalize(value) | |
| else: | |
| llama2_state_dict[key] = value | |
| with open(os.path.join(input_dir, llama2_json), "r", encoding="utf-8") as f: | |
| llama2_index = json.load(f) | |
| merged_index = OrderedDict() | |
| merged_index["metadata"] = {"total_size": total_size} | |
| merged_index["weight_map"] = llama2_index["weight_map"] | |
| state_dict_a, state_dict_b = OrderedDict(), OrderedDict() | |
| for key, value in llama2_state_dict.items(): | |
| if merged_index["weight_map"][key] == SHARD_A: | |
| state_dict_a[key] = value | |
| else: | |
| state_dict_b[key] = value | |
| os.makedirs(output_dir, exist_ok=True) | |
| torch.save(state_dict_a, os.path.join(output_dir, SHARD_A)) | |
| torch.save(state_dict_b, os.path.join(output_dir, SHARD_B)) | |
| with open(os.path.join(output_dir, "pytorch_model.bin.index.json"), "w", encoding="utf-8") as f: | |
| json.dump(merged_index, f, indent=2) | |
| print("Completed!") | |
| if __name__ == "__main__": | |
| fire.Fire(llamafy_baichuan2) | |