Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Evaluates fine-tuned models automatically. | |
| # Usage: python evaluate_zh.py --evalset ceval/ceval-exam:law --split dev --output_file result.json | |
| # --api_base http://localhost:8000/v1 --task_type choice --n_samples 100 | |
| # dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"]) | |
| import os | |
| import fire | |
| import json | |
| import openai | |
| from tqdm import tqdm | |
| from typing import Literal, Optional | |
| from datasets import load_dataset | |
| def format_example_choice(examples): | |
| model_inputs = {"query": [], "label": []} | |
| task_template = "请从ABCD四个选项中选出正确的选项,仅输出选项序号。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案:" | |
| for i in range(len(examples["id"])): | |
| query = task_template.format( | |
| question=examples["question"][i], | |
| A=examples["A"][i], | |
| B=examples["B"][i], | |
| C=examples["C"][i], | |
| D=examples["D"][i] | |
| ) | |
| label = examples["answer"][i] | |
| model_inputs["query"].append(query) | |
| model_inputs["label"].append(label) | |
| return model_inputs | |
| def format_example_cloze(examples): | |
| model_inputs = {"query": [], "label": []} | |
| task_template = "请选择正确的答案填空,仅输出正确的选项。\n{question}\n选项:{A}\n{B}\n{C}\n{D}\n答案:" | |
| for i in range(len(examples["id"])): | |
| query = task_template.format( | |
| question=examples["question"][i], | |
| A=examples["A"][i], | |
| B=examples["B"][i], | |
| C=examples["C"][i], | |
| D=examples["D"][i] | |
| ) | |
| label = examples[examples["answer"][i]][i] | |
| model_inputs["query"].append(query) | |
| model_inputs["label"].append(label) | |
| return model_inputs | |
| def format_example_openqa(examples): | |
| model_inputs = {"query": [], "label": []} | |
| task_template = "回答以下问题:{question}\n答案:" | |
| for i in range(len(examples["id"])): | |
| query = task_template.format(question=examples["question"][i]) | |
| label = examples[examples["answer"][i]][i] | |
| model_inputs["query"].append(query) | |
| model_inputs["label"].append(label) | |
| return model_inputs | |
| TASK_DICT = { | |
| "choice": format_example_choice, | |
| "cloze": format_example_cloze, | |
| "openqa": format_example_openqa | |
| } | |
| EXT2TYPE = { | |
| "csv": "csv", | |
| "json": "json", | |
| "jsonl": "json" | |
| } | |
| def evaluate( | |
| evalset: str, | |
| api_base: str, | |
| output_file: str, | |
| split: Optional[str] = "val", | |
| task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice", | |
| n_samples: Optional[int] = 20 | |
| ): | |
| openai.api_base = api_base | |
| openai.api_key = "none" | |
| if os.path.isfile(evalset): | |
| dataset = load_dataset(EXT2TYPE[evalset.split(".")[-1]], data_files=evalset)["train"] | |
| elif ":" in evalset: | |
| evalset, subset = evalset.split(":") | |
| dataset = load_dataset(evalset, subset, split=split) | |
| else: | |
| dataset = load_dataset(evalset, split=split) | |
| n_samples = min(len(dataset), n_samples) | |
| dataset = dataset.map(TASK_DICT[task_type], batched=True) | |
| dataset = dataset.select(range(n_samples)) | |
| n_correct = 0 | |
| predictions = [] | |
| for example in tqdm(dataset): | |
| query, label = example["query"], example["label"] | |
| predict = openai.ChatCompletion.create( | |
| model="default", | |
| messages=[{"role": "user", "content": query}], | |
| temperature=0.01, | |
| top_p=0.01, | |
| max_new_tokens=20 | |
| ).choices[0].message.content | |
| if task_type == "choice" and predict[0].lower() == label[0].lower(): | |
| n_correct += 1 | |
| if task_type == "cloze" and label in [predict[:len(label)], predict[-len(label):]]: | |
| n_correct += 1 | |
| if task_type == "openqa" and label in predict: | |
| n_correct += 1 | |
| predictions.append({ | |
| "query": query, | |
| "label": label, | |
| "predict": predict | |
| }) | |
| print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100)) | |
| with open(output_file, "w", encoding="utf-8") as f: | |
| json.dump(predictions, f, indent=2, ensure_ascii=False) | |
| if __name__ == "__main__": | |
| fire.Fire(evaluate) | |