Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Calculates the flops of pre-trained models. | |
| # Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 | |
| # Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/ | |
| import fire | |
| import torch | |
| from typing import Optional | |
| from deepspeed.accelerator import get_accelerator | |
| from deepspeed.profiling.flops_profiler import get_model_profile | |
| from llmtuner import ChatModel | |
| def calculate( | |
| model_name_or_path: str, | |
| batch_size: Optional[int] = 1, | |
| seq_length: Optional[int] = 256, | |
| flash_attn: Optional[bool] = False | |
| ): | |
| with get_accelerator().device(0): | |
| chat_model = ChatModel(dict( | |
| model_name_or_path=model_name_or_path, | |
| template="vanilla", | |
| flash_attn=flash_attn | |
| )) | |
| fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device) | |
| input_dict = { | |
| "input_ids": fake_input, | |
| "labels": fake_input.clone() | |
| } | |
| flops, macs, params = get_model_profile( | |
| chat_model.model, | |
| kwargs=input_dict, | |
| print_profile=True, | |
| detailed=True | |
| ) | |
| print("FLOPS:", flops) | |
| print("MACs:", macs) | |
| print("Params:", params) | |
| if __name__ == "__main__": | |
| fire.Fire(calculate) | |