Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +31 -1
src/streamlit_app.py
CHANGED
|
@@ -1,7 +1,37 @@
|
|
|
|
|
|
|
|
| 1 |
os.environ["MPLCONFIGDIR"] = "/tmp"
|
| 2 |
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
|
| 3 |
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
|
| 4 |
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
|
| 5 |
os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
|
| 6 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 7 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
os.environ["MPLCONFIGDIR"] = "/tmp"
|
| 4 |
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
|
| 5 |
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
|
| 6 |
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
|
| 7 |
os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
|
| 8 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 10 |
+
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 14 |
+
|
| 15 |
+
# App config and title
|
| 16 |
+
st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="🤖")
|
| 17 |
+
st.title("🧠 DeepSeek-R1 CPU Chatbot")
|
| 18 |
+
st.caption("Running entirely on CPU using Hugging Face Transformers")
|
| 19 |
+
|
| 20 |
+
@st.cache_resource
|
| 21 |
+
def load_model():
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
|
| 24 |
+
return tokenizer, model
|
| 25 |
+
|
| 26 |
+
tokenizer, model = load_model()
|
| 27 |
+
|
| 28 |
+
user_input = st.text_area("📥 Enter your prompt here:", "Explain what a neural network is.")
|
| 29 |
+
|
| 30 |
+
if st.button("🧠 Generate Response"):
|
| 31 |
+
with st.spinner("Thinking..."):
|
| 32 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
| 33 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
|
| 36 |
+
st.markdown("### 🤖 Response:")
|
| 37 |
+
st.write(response)
|