Spaces:
Build error
Build error
Commit
Β·
a147e52
1
Parent(s):
a7c877e
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,8 +7,21 @@ from transformers import AutoTokenizer
|
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
|
| 9 |
input_embeddings = np.load("bert_input_embeddings.npy")
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
vocab = {v:k for k,v in tokenizer.vocab.items()}
|
| 13 |
lookup_table = pd.Series(vocab).sort_index()
|
| 14 |
|
|
@@ -18,9 +31,9 @@ def get_first_subword(word):
|
|
| 18 |
except:
|
| 19 |
return tokenizer(word, add_special_tokens=False)['input_ids'][0]
|
| 20 |
|
| 21 |
-
def search(token_to_lookup, num_neighbors=
|
| 22 |
i = get_first_subword(token_to_lookup)
|
| 23 |
-
_ , I =
|
| 24 |
hits = lookup_table.take(I[0])
|
| 25 |
results = hits.values[1:]
|
| 26 |
return [r for r in results if not "##" in r], [[r for r in results if "##" in r]]
|
|
|
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
|
| 9 |
input_embeddings = np.load("bert_input_embeddings.npy")
|
| 10 |
+
unnormalized_input_embeddings = np.load("unnormalized_bert_input_embeddings.npy")
|
| 11 |
+
|
| 12 |
+
index_L2 = IndexFlatL2(input_embeddings.shape[-1])
|
| 13 |
+
index_L2.add(input_embeddings)
|
| 14 |
+
|
| 15 |
+
index_IP = IndexFlatIP(input_embeddings.shape[-1])
|
| 16 |
+
index_IP.add(input_embeddings)
|
| 17 |
+
|
| 18 |
+
index_L2_unnormalized = IndexFlatL2(unnormalized_input_embeddings.shape[-1])
|
| 19 |
+
index_L2_unnormalized.add(unnormalized_input_embeddings)
|
| 20 |
+
|
| 21 |
+
index_IP_unnormalized = IndexFlatIP(unnormalized_input_embeddings.shape[-1])
|
| 22 |
+
index_IP_unnormalized.add(unnormalized_input_embeddings)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
vocab = {v:k for k,v in tokenizer.vocab.items()}
|
| 26 |
lookup_table = pd.Series(vocab).sort_index()
|
| 27 |
|
|
|
|
| 31 |
except:
|
| 32 |
return tokenizer(word, add_special_tokens=False)['input_ids'][0]
|
| 33 |
|
| 34 |
+
def search(token_to_lookup, num_neighbors=200):
|
| 35 |
i = get_first_subword(token_to_lookup)
|
| 36 |
+
_ , I = index_L2_unnormalized.search(unnormalized_input_embeddings[i:i+1], num_neighbors)
|
| 37 |
hits = lookup_table.take(I[0])
|
| 38 |
results = hits.values[1:]
|
| 39 |
return [r for r in results if not "##" in r], [[r for r in results if "##" in r]]
|