File size: 7,172 Bytes
fe3f5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
Chat State and Logging
'''

import json
import os
from typing import Any, Literal, Optional
from conversation import Conversation


import datetime
import uuid


LOG_DIR = os.getenv("LOGDIR", "./logs")
'''
The default output dir of log files
'''


class ModelChatState:
    '''
    The state of a chat with a model.
    '''

    is_vision: bool
    '''
    Whether the model is vision based.
    '''

    conv: Conversation
    '''
    The conversation
    '''

    conv_id: str
    '''
    Unique identifier for the model conversation.
    Unique per chat per model.
    '''

    chat_session_id: str
    '''
    Unique identifier for the chat session.
    Unique per chat. The two battle models share the same chat session id.
    '''

    skip_next: bool
    '''
    Flag to indicate skipping the next operation.
    '''

    model_name: str
    '''
    Name of the model being used.
    '''

    oai_thread_id: Optional[str]
    '''
    Identifier for the OpenAI thread.
    '''

    has_csam_image: bool
    '''
    Indicates if a CSAM image has been uploaded.
    '''

    regen_support: bool
    '''
    Indicates if regeneration is supported for the model.
    '''

    chat_start_time: datetime.datetime
    '''
    Chat start time.
    '''

    chat_mode: Literal['battle_anony', 'battle_named', 'direct']
    '''
    Chat mode.
    '''

    curr_response_type: Literal['chat_multi', 'chat_single', 'regenerate_multi', 'regenerate_single'] | None
    '''
    Current response type. Used for logging.
    '''

    @staticmethod
    def create_chat_session_id() -> str:
        '''
        Create a new chat session id.
        '''
        return uuid.uuid4().hex

    @staticmethod
    def create_battle_chat_states(
        model_name_1: str, model_name_2: str,
        chat_mode: Literal['battle_anony', 'battle_named'],
        is_vision: bool,
    ) -> tuple['ModelChatState', 'ModelChatState']:
        '''
        Create two chat states for a battle.
        '''
        chat_session_id = ModelChatState.create_chat_session_id()
        return (
            ModelChatState(model_name_1, chat_mode,
                           is_vision=is_vision,
                           chat_session_id=chat_session_id),
            ModelChatState(model_name_2, chat_mode,
                           is_vision=is_vision,
                           chat_session_id=chat_session_id),
        )


    def __init__(self,
        model_name: str,
        chat_mode: Literal['battle_anony', 'battle_named', 'direct'],
        is_vision: bool,
        chat_session_id: str | None = None,
    ):
        from fastchat.model.model_adapter import get_conversation_template

        self.conv = get_conversation_template(model_name)
        self.conv_id = uuid.uuid4().hex
        # if no chat session id is provided, use the conversation id
        self.chat_session_id = chat_session_id if chat_session_id else self.conv_id
        self.chat_start_time = datetime.datetime.now()
        self.chat_mode = chat_mode

        self.skip_next = False
        self.model_name = model_name
        self.oai_thread_id = None
        self.is_vision = is_vision

        # NOTE(chris): This could be sort of a hack since it assumes the user only uploads one image. If they can upload multiple, we should store a list of image hashes.
        self.has_csam_image = False

        self.regen_support = True
        if "browsing" in model_name:
            self.regen_support = False
        self.init_system_prompt(self.conv, is_vision)

    def init_system_prompt(self, conv, is_vision):
        system_prompt = conv.get_system_message(is_vision)
        if len(system_prompt) == 0:
            return
        current_date = datetime.datetime.now().strftime("%Y-%m-%d")
        system_prompt = system_prompt.replace("{{currentDateTime}}", current_date)

        current_date_v2 = datetime.datetime.now().strftime("%d %b %Y")
        system_prompt = system_prompt.replace("{{currentDateTimev2}}", current_date_v2)

        current_date_v3 = datetime.datetime.now().strftime("%B %Y")
        system_prompt = system_prompt.replace("{{currentDateTimev3}}", current_date_v3)
        conv.set_system_message(system_prompt)

    def set_response_type(
        self,
        response_type: Literal['chat_multi', 'chat_single', 'regenerate_multi', 'regenerate_single']
    ):
        '''
        Set the response type for the chat state.
        '''
        self.curr_response_type = response_type

    def to_gradio_chatbot(self):
        '''
        Convert to a Gradio chatbot.
        '''
        return self.conv.to_gradio_chatbot()

    def get_conv_log_filepath(self, path_prefix: str):
        '''
        Get the filepath for the conversation log.

        Expected directory structure:
            softwarearenlog/
            └── YEAR_MONTH_DAY/
                β”œβ”€β”€ conv_logs/
                └── sandbox_logs/
        '''
        date_str = self.chat_start_time.strftime('%Y_%m_%d')
        filepath = os.path.join(
            path_prefix,
            date_str,
            'conv_logs',
            self.chat_mode,
            f"conv-log-{self.chat_session_id}.json"
        )
        return filepath

    def to_dict(self):
        base = self.conv.to_dict()
        base.update(
            {
                "chat_session_id": self.chat_session_id,
                "conv_id": self.conv_id,
                "chat_mode": self.chat_mode,
                "chat_start_time": self.chat_start_time,
                "model_name": self.model_name,
            }
        )

        if self.is_vision:
            base.update({"has_csam_image": self.has_csam_image})
        return base

    def generate_vote_record(
            self,
            vote_type: str,
            ip: str
        ) -> dict[str, Any]:
        '''
        Generate a vote record for telemertry.
        '''
        data = {
            "tstamp": round(datetime.datetime.now().timestamp(), 4),
            "type": vote_type,
            "model": self.model_name,
            "state": self.to_dict(),
            "ip": ip,
        }
        return data

    def generate_response_record(
            self,
            gen_params: dict[str, Any],
            start_ts: float,
            end_ts: float,
            ip: str
        ) -> dict[str, Any]:
        '''
        Generate a vote record for telemertry.
        '''
        data = {
            "tstamp": round(datetime.datetime.now().timestamp(), 4),
            "type": self.curr_response_type,
            "model": self.model_name,
            "start_ts": round(start_ts, 4),
            "end_ts": round(end_ts, 4),
            "gen_params": gen_params,
            "state": self.to_dict(),
            "ip": ip,
        }
        return data


def save_log_to_local(
    log_data: dict[str, Any],
    log_path: str,
    write_mode: Literal['overwrite', 'append'] = 'append'
):
    '''
    Save the log locally.
    '''
    log_json = json.dumps(log_data, default=str)
    os.makedirs(os.path.dirname(log_path), exist_ok=True)
    with open(log_path, "w" if write_mode == 'overwrite' else 'a') as fout:
        fout.write(log_json + "\n")