import spaces def extract_top_level_json(s: str) -> str: start = s.find("{") if start == -1: return "" depth = 0 for i in range(start, len(s)): ch = s[i] if ch == "{": depth += 1 elif ch == "}": depth -= 1 if depth == 0: candidate = s[start:i + 1] try: json.loads(candidate) # validate return candidate except Exception: return "" return "" @spaces.GPU(duration=25) def get_local_model_gpu(model_id: str): import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32) model.to(device) model.eval() return model