Update level_classifier_tool.py
Browse files- level_classifier_tool.py +27 -57
level_classifier_tool.py
CHANGED
|
@@ -22,7 +22,9 @@ class HFEmbeddingBackend:
|
|
| 22 |
Uses mean pooling over last_hidden_state and L2 normalizes the result.
|
| 23 |
"""
|
| 24 |
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def _lazy_import(self) -> None:
|
| 28 |
global _TOK, _MODEL, _TORCH
|
|
@@ -33,24 +35,27 @@ class HFEmbeddingBackend:
|
|
| 33 |
from transformers import AutoTokenizer, AutoModel # type: ignore
|
| 34 |
_TOK = AutoTokenizer.from_pretrained(self.model_name)
|
| 35 |
_MODEL = AutoModel.from_pretrained(self.model_name)
|
| 36 |
-
|
|
|
|
| 37 |
_MODEL.to(dev).eval()
|
| 38 |
self.device = dev
|
| 39 |
|
| 40 |
def encode(self, texts: Iterable[str], batch_size: int = 32) -> "tuple[_TORCH.Tensor, list[str]]":
|
| 41 |
"""
|
| 42 |
-
Returns (embeddings, texts_list). Embeddings
|
| 43 |
"""
|
| 44 |
self._lazy_import()
|
| 45 |
torch = _TORCH # local alias
|
| 46 |
texts_list = list(texts)
|
| 47 |
if not texts_list:
|
|
|
|
| 48 |
return torch.empty((0, _MODEL.config.hidden_size)), [] # type: ignore
|
| 49 |
|
| 50 |
all_out = []
|
| 51 |
with torch.inference_mode():
|
| 52 |
for i in range(0, len(texts_list), batch_size):
|
| 53 |
batch = texts_list[i:i + batch_size]
|
|
|
|
| 54 |
enc = _TOK(batch, padding=True, truncation=True, return_tensors="pt").to(self.device) # type: ignore
|
| 55 |
out = _MODEL(**enc)
|
| 56 |
last = out.last_hidden_state # [B, T, H]
|
|
@@ -61,7 +66,9 @@ class HFEmbeddingBackend:
|
|
| 61 |
pooled = summed / counts
|
| 62 |
# L2 normalize
|
| 63 |
pooled = pooled / pooled.norm(dim=1, keepdim=True).clamp(min=1e-12)
|
|
|
|
| 64 |
all_out.append(pooled.cpu())
|
|
|
|
| 65 |
embs = torch.cat(all_out, dim=0) if all_out else torch.empty((0, _MODEL.config.hidden_size)) # type: ignore
|
| 66 |
return embs, texts_list
|
| 67 |
|
|
@@ -102,16 +109,22 @@ def build_phrase_index(
|
|
| 102 |
cur += len(plist)
|
| 103 |
spans.append((lvl, start, cur))
|
| 104 |
|
| 105 |
-
embs, _ = backend.encode(all_texts)
|
|
|
|
| 106 |
# Slice embeddings back into level buckets
|
| 107 |
torch = _TORCH
|
| 108 |
embeddings_by_level: Dict[str, "Any"] = {}
|
| 109 |
for lvl, start, end in spans:
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
return PhraseIndex(
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
def _aggregate_sims(
|
|
@@ -153,64 +166,20 @@ def classify_levels_phrases(
|
|
| 153 |
"""
|
| 154 |
Score a question against Bloom's taxonomy and DOK (Depth of Knowledge)
|
| 155 |
using cosine similarity to level-specific anchor phrases.
|
| 156 |
-
|
| 157 |
-
Parameters
|
| 158 |
-
----------
|
| 159 |
-
question : str
|
| 160 |
-
The input question or prompt.
|
| 161 |
-
blooms_phrases : dict[str, Iterable[str]]
|
| 162 |
-
Mapping level -> list of anchor phrases for Bloom's.
|
| 163 |
-
dok_phrases : dict[str, Iterable[str]]
|
| 164 |
-
Mapping level -> list of anchor phrases for DOK.
|
| 165 |
-
model_name : str
|
| 166 |
-
Hugging Face model name for text embeddings. Ignored when `backend` provided.
|
| 167 |
-
agg : {"mean","max","topk_mean"}
|
| 168 |
-
Aggregation over phrase similarities within a level.
|
| 169 |
-
topk : int
|
| 170 |
-
Used only when `agg="topk_mean"`.
|
| 171 |
-
preprocess : Optional[Callable[[str], str]]
|
| 172 |
-
Preprocessing function for the question string. Defaults to whitespace normalization.
|
| 173 |
-
backend : Optional[HFEmbeddingBackend]
|
| 174 |
-
Injected embedding backend. If not given, one is constructed.
|
| 175 |
-
prebuilt_bloom_index, prebuilt_dok_index : Optional[PhraseIndex]
|
| 176 |
-
If provided, reuse precomputed phrase embeddings to avoid re-encoding.
|
| 177 |
-
return_phrase_matches : bool
|
| 178 |
-
If True, returns per-level top contributing phrases.
|
| 179 |
-
|
| 180 |
-
Returns
|
| 181 |
-
-------
|
| 182 |
-
dict
|
| 183 |
-
{
|
| 184 |
-
"question": ...,
|
| 185 |
-
"model_name": ...,
|
| 186 |
-
"blooms": {
|
| 187 |
-
"scores": {level: float, ...},
|
| 188 |
-
"best_level": str,
|
| 189 |
-
"best_score": float,
|
| 190 |
-
"top_phrases": {level: [(phrase, sim_float), ...], ...} # only if return_phrase_matches
|
| 191 |
-
},
|
| 192 |
-
"dok": {
|
| 193 |
-
"scores": {level: float, ...},
|
| 194 |
-
"best_level": str,
|
| 195 |
-
"best_score": float,
|
| 196 |
-
"top_phrases": {level: [(phrase, sim_float), ...], ...} # only if return_phrase_matches
|
| 197 |
-
},
|
| 198 |
-
"config": {"agg": agg, "topk": topk if agg=='topk_mean' else None}
|
| 199 |
-
}
|
| 200 |
"""
|
| 201 |
preprocess = preprocess or _default_preprocess
|
| 202 |
question_clean = preprocess(question)
|
| 203 |
|
| 204 |
-
# Prepare backend
|
| 205 |
be = backend or HFEmbeddingBackend(model_name=model_name)
|
| 206 |
|
| 207 |
# Build / reuse indices
|
| 208 |
bloom_index = prebuilt_bloom_index or build_phrase_index(be, blooms_phrases)
|
| 209 |
dok_index = prebuilt_dok_index or build_phrase_index(be, dok_phrases)
|
| 210 |
|
| 211 |
-
# Encode question
|
| 212 |
q_emb, _ = be.encode([question_clean])
|
| 213 |
-
q_emb = q_emb[0:1]
|
| 214 |
torch = _TORCH
|
| 215 |
|
| 216 |
def _score_block(index: PhraseIndex) -> Tuple[Dict[str, float], Dict[str, List[Tuple[str, float]]]]:
|
|
@@ -218,12 +187,13 @@ def classify_levels_phrases(
|
|
| 218 |
top_contribs: Dict[str, List[Tuple[str, float]]] = {}
|
| 219 |
|
| 220 |
for lvl, phrases in index.phrases_by_level.items():
|
| 221 |
-
embs = index.embeddings_by_level[lvl] # [N, D]
|
| 222 |
if embs.numel() == 0:
|
| 223 |
scores[lvl] = float("nan")
|
| 224 |
top_contribs[lvl] = []
|
| 225 |
continue
|
| 226 |
-
|
|
|
|
| 227 |
scores[lvl] = _aggregate_sims(sims, agg, topk)
|
| 228 |
if return_phrase_matches:
|
| 229 |
k = min(5, sims.numel())
|
|
|
|
| 22 |
Uses mean pooling over last_hidden_state and L2 normalizes the result.
|
| 23 |
"""
|
| 24 |
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
|
| 25 |
+
# "cuda" | "cpu" | None -> (env or "cpu")
|
| 26 |
+
# We default to CPU on Spaces to avoid ZeroGPU device mixups.
|
| 27 |
+
device: Optional[str] = None
|
| 28 |
|
| 29 |
def _lazy_import(self) -> None:
|
| 30 |
global _TOK, _MODEL, _TORCH
|
|
|
|
| 35 |
from transformers import AutoTokenizer, AutoModel # type: ignore
|
| 36 |
_TOK = AutoTokenizer.from_pretrained(self.model_name)
|
| 37 |
_MODEL = AutoModel.from_pretrained(self.model_name)
|
| 38 |
+
# Prefer explicit device -> env override -> default to CPU
|
| 39 |
+
dev = self.device or os.getenv("EMBEDDING_DEVICE") or "cpu"
|
| 40 |
_MODEL.to(dev).eval()
|
| 41 |
self.device = dev
|
| 42 |
|
| 43 |
def encode(self, texts: Iterable[str], batch_size: int = 32) -> "tuple[_TORCH.Tensor, list[str]]":
|
| 44 |
"""
|
| 45 |
+
Returns (embeddings, texts_list). Embeddings are a CPU torch.Tensor [N, D], unit-normalized.
|
| 46 |
"""
|
| 47 |
self._lazy_import()
|
| 48 |
torch = _TORCH # local alias
|
| 49 |
texts_list = list(texts)
|
| 50 |
if not texts_list:
|
| 51 |
+
# Hidden size available after _lazy_import
|
| 52 |
return torch.empty((0, _MODEL.config.hidden_size)), [] # type: ignore
|
| 53 |
|
| 54 |
all_out = []
|
| 55 |
with torch.inference_mode():
|
| 56 |
for i in range(0, len(texts_list), batch_size):
|
| 57 |
batch = texts_list[i:i + batch_size]
|
| 58 |
+
# Tokenize and move to model device
|
| 59 |
enc = _TOK(batch, padding=True, truncation=True, return_tensors="pt").to(self.device) # type: ignore
|
| 60 |
out = _MODEL(**enc)
|
| 61 |
last = out.last_hidden_state # [B, T, H]
|
|
|
|
| 66 |
pooled = summed / counts
|
| 67 |
# L2 normalize
|
| 68 |
pooled = pooled / pooled.norm(dim=1, keepdim=True).clamp(min=1e-12)
|
| 69 |
+
# Collect on CPU for downstream ops
|
| 70 |
all_out.append(pooled.cpu())
|
| 71 |
+
|
| 72 |
embs = torch.cat(all_out, dim=0) if all_out else torch.empty((0, _MODEL.config.hidden_size)) # type: ignore
|
| 73 |
return embs, texts_list
|
| 74 |
|
|
|
|
| 109 |
cur += len(plist)
|
| 110 |
spans.append((lvl, start, cur))
|
| 111 |
|
| 112 |
+
embs, _ = backend.encode(all_texts) # embs is a CPU torch.Tensor [N, D]
|
| 113 |
+
|
| 114 |
# Slice embeddings back into level buckets
|
| 115 |
torch = _TORCH
|
| 116 |
embeddings_by_level: Dict[str, "Any"] = {}
|
| 117 |
for lvl, start, end in spans:
|
| 118 |
+
if end > start:
|
| 119 |
+
embeddings_by_level[lvl] = embs[start:end] # torch.Tensor slice [n_i, D]
|
| 120 |
+
else:
|
| 121 |
+
embeddings_by_level[lvl] = torch.empty((0, embs.shape[1])) # type: ignore
|
| 122 |
|
| 123 |
+
return PhraseIndex(
|
| 124 |
+
phrases_by_level={lvl: list(pl) for lvl, pl in cleaned.items()},
|
| 125 |
+
embeddings_by_level=embeddings_by_level,
|
| 126 |
+
model_name=backend.model_name
|
| 127 |
+
)
|
| 128 |
|
| 129 |
|
| 130 |
def _aggregate_sims(
|
|
|
|
| 166 |
"""
|
| 167 |
Score a question against Bloom's taxonomy and DOK (Depth of Knowledge)
|
| 168 |
using cosine similarity to level-specific anchor phrases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
"""
|
| 170 |
preprocess = preprocess or _default_preprocess
|
| 171 |
question_clean = preprocess(question)
|
| 172 |
|
| 173 |
+
# Prepare backend (defaults to CPU)
|
| 174 |
be = backend or HFEmbeddingBackend(model_name=model_name)
|
| 175 |
|
| 176 |
# Build / reuse indices
|
| 177 |
bloom_index = prebuilt_bloom_index or build_phrase_index(be, blooms_phrases)
|
| 178 |
dok_index = prebuilt_dok_index or build_phrase_index(be, dok_phrases)
|
| 179 |
|
| 180 |
+
# Encode question -> CPU torch.Tensor [1, D]
|
| 181 |
q_emb, _ = be.encode([question_clean])
|
| 182 |
+
q_emb = q_emb[0:1]
|
| 183 |
torch = _TORCH
|
| 184 |
|
| 185 |
def _score_block(index: PhraseIndex) -> Tuple[Dict[str, float], Dict[str, List[Tuple[str, float]]]]:
|
|
|
|
| 187 |
top_contribs: Dict[str, List[Tuple[str, float]]] = {}
|
| 188 |
|
| 189 |
for lvl, phrases in index.phrases_by_level.items():
|
| 190 |
+
embs = index.embeddings_by_level[lvl] # torch.Tensor [N, D]
|
| 191 |
if embs.numel() == 0:
|
| 192 |
scores[lvl] = float("nan")
|
| 193 |
top_contribs[lvl] = []
|
| 194 |
continue
|
| 195 |
+
# cosine similarity since embs and q_emb are unit-normalized
|
| 196 |
+
sims = (q_emb @ embs.T).squeeze(0)
|
| 197 |
scores[lvl] = _aggregate_sims(sims, agg, topk)
|
| 198 |
if return_phrase_matches:
|
| 199 |
k = min(5, sims.numel())
|