bhardwaj08sarthak's picture
Create app.py
bfc2469 verified
raw
history blame
10.8 kB
import os
import json
import gradio as gr
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool
from level_classifier_tool import (
classify_levels_phrases,
HFEmbeddingBackend,
build_phrase_index
)
BLOOMS_PHRASES = {
"Remember": [
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find", "select", "match", "choose", "give", "write", "tell", "show"
],
"Understand": [
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss", "predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
],
"Apply": [
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform", "execute", "carry out", "practice", "employ", "sketch"
],
"Analyze": [
"analyze", "differentiate", "organize", "structure", "break down", "distinguish", "dissect", "examine", "compare", "contrast", "attribute", "investigate"
],
"Evaluate": [
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support", "appraise", "recommend", "conclude", "review"
],
"Create": [
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate", "develop", "formulate", "invent", "build"
]
}
DOK_PHRASES = {
"DOK1": [
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
"write", "tell", "show", "point out"
],
"DOK2": [
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
],
"DOK3": [
"justify", "analyze", "generalise", "compare", "construct", "investigate",
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
"probe", "explore", "develop", "formulate"
],
"DOK4": [
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
"predict outcome", "simulate"
]
}
# Prebuild embeddings once
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
@tool
def classify_and_score(
question: str,
target_bloom: str,
target_dok: str,
agg: str = "max"
) -> dict:
"""Classify a question against Bloom’s and DOK targets and return guidance.
Args:
question: The question text to evaluate for cognitive demand.
target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
or plus form (e.g., "Apply+") meaning that level or higher.
target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
or span (e.g., "DOK2-DOK3").
agg: Aggregation method over phrase similarities within a level
(choices: "mean", "max", "topk_mean").
Returns:
A dictionary with:
ok: True if both Bloom’s and DOK match the targets.
measured: Dict with best levels and per-level scores for Bloom’s and DOK.
feedback: Brief guidance describing how to adjust the question to hit targets.
"""
res = classify_levels_phrases(
question,
BLOOMS_PHRASES,
DOK_PHRASES,
backend=_backend,
prebuilt_bloom_index=_BLOOM_INDEX,
prebuilt_dok_index=_DOK_INDEX,
agg=agg,
return_phrase_matches=True
)
def _parse_target_bloom(t: str):
order = ["Remember","Understand","Apply","Analyze","Evaluate","Create"]
if t.endswith("+"):
base = t[:-1]
return set(order[order.index(base):])
return {t}
def _parse_target_dok(t: str):
order = ["DOK1","DOK2","DOK3","DOK4"]
if "-" in t:
lo, hi = t.split("-")
return set(order[order.index(lo):order.index(hi)+1])
return {t}
bloom_target_set = _parse_target_bloom(target_bloom)
dok_target_set = _parse_target_dok(target_dok)
bloom_best = res["blooms"]["best_level"]
dok_best = res["dok"]["best_level"]
bloom_ok = bloom_best in bloom_target_set
dok_ok = dok_best in dok_target_set
feedback_parts = []
if not bloom_ok:
feedback_parts.append(
f"Shift Bloom’s from {bloom_best} toward {sorted(bloom_target_set)}. "
f"Top cues: {res['blooms']['top_phrases'].get(bloom_best, [])[:3]}"
)
if not dok_ok:
feedback_parts.append(
f"Shift DOK from {dok_best} toward {sorted(dok_target_set)}. "
f"Top cues: {res['dok']['top_phrases'].get(dok_best, [])[:3]}"
)
return {
"ok": bool(bloom_ok and dok_ok),
"measured": {
"bloom_best": bloom_best,
"bloom_scores": res["blooms"]["scores"],
"dok_best": dok_best,
"dok_scores": res["dok"]["scores"],
},
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
}
# ------------------------ Agent setup with timeout ------------------------
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
client = InferenceClient(
model=model_id,
provider=provider,
timeout=timeout,
token=hf_token if hf_token else None,
)
model = InferenceClientModel(client=client)
agent = CodeAgent(model=model, tools=[classify_and_score])
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens} # attach for reference
return agent
# ------------------------ Agent task template -----------------------------
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".
After you propose a candidate, you MUST immediately call:
classify_and_score(
question=<just the question text>,
target_bloom="{target_bloom}",
target_dok="{target_dok}",
agg="max"
)
Use the returned dict:
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
Repeat up to {attempts} attempts.
Keep answers concise.
Additionally, when you call classify_and_score, pass the exact question text you propose.
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
'''
# ------------------------ Gradio glue ------------------------------------
def run_pipeline(
hf_token,
topic,
grade,
subject,
target_bloom,
target_dok,
attempts,
model_id,
provider,
timeout,
temperature,
max_tokens
):
# Build agent per run (or cache if you prefer)
agent = make_agent(
hf_token=hf_token.strip(),
model_id=model_id,
provider=provider,
timeout=int(timeout),
temperature=float(temperature),
max_tokens=int(max_tokens),
)
task = TASK_TMPL.format(
grade=grade,
topic=topic,
subject=subject,
target_bloom=target_bloom,
target_dok=target_dok,
attempts=int(attempts)
)
# The agent will internally call the tool
try:
result_text = agent.run(task, max_steps=int(attempts)*4)
except Exception as e:
result_text = f"ERROR: {e}"
# Try to extract final JSON
final_json = ""
try:
# find JSON object in result_text (simple heuristic)
start = result_text.find("{")
end = result_text.rfind("}")
if start != -1 and end != -1 and end > start:
candidate = result_text[start:end+1]
final_json = json.dumps(json.loads(candidate), indent=2)
except Exception:
final_json = ""
return final_json, result_text
with gr.Blocks() as demo:
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
gr.Markdown(
"This app uses a **CodeAgent** that *calls the scoring tool* "
"(`classify_and_score`) after each proposal, and revises until it hits the target."
)
with gr.Accordion("API Settings", open=False):
hf_token = gr.Textbox(label="Hugging Face Token (required if the endpoint needs auth)", type="password")
model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
provider = gr.Textbox(value="novita", label="Provider")
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")
with gr.Row():
topic = gr.Textbox(value="Fractions", label="Topic")
grade = gr.Dropdown(
choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
"Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
value="Grade 7",
label="Grade"
)
subject= gr.Textbox(value="Math", label="Subject")
with gr.Row():
target_bloom = gr.Dropdown(
choices=["Remember","Understand","Apply","Analyze","Evaluate","Create"],
value="Analyze",
label="Target Bloom’s"
)
target_dok = gr.Dropdown(
choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
value="DOK2-DOK3",
label="Target Depth of Knowledge"
)
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
with gr.Accordion("⚙️ Generation Controls", open=False):
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
run_btn = gr.Button("Run Agent 🚀")
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
transcript = gr.Textbox(label="Agent Transcript", lines=18)
run_btn.click(
fn=run_pipeline,
inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens],
outputs=[final_json, transcript]
)
if __name__ == "__main__":
demo.launch()