|
|
|
|
|
|
|
|
import sys |
|
|
sys.path.append(r"C:\Users\Sarthak\OneDrive - UT Cloud\thesis\HF_Agent\src") |
|
|
import json |
|
|
import gradio as gr |
|
|
from huggingface_hub import InferenceClient |
|
|
from smolagents import CodeAgent, InferenceClientModel, tool |
|
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
from llama_index.core import VectorStoreIndex, Document |
|
|
from huggingface_hub import login |
|
|
from smolagents import tool |
|
|
from all_datasets import * |
|
|
from level_classifier_tool_2 import ( |
|
|
classify_levels_phrases, |
|
|
HFEmbeddingBackend, |
|
|
build_phrase_index |
|
|
) |
|
|
from task_temp import TASK_TMPL, CLASSIFY_TMPL, GEN_TMPL, RAG_TMPL |
|
|
from all_tools import classify_and_score, QuestionRetrieverTool |
|
|
from phrases import BLOOMS_PHRASES, DOK_PHRASES |
|
|
|
|
|
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
|
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES) |
|
|
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES) |
|
|
D = { |
|
|
"GSM8k": GSM8k['question'], |
|
|
"Olympiad": Olympiad_math['question'], |
|
|
"Olympiad2": Olympiad_math2['question'], |
|
|
"DeepMind Math": clean_math['question'], |
|
|
"MMMLU": MMMLU['question'], |
|
|
"MMMU": MMMU['question'], |
|
|
"ScienceQA": ScienceQA['question'], |
|
|
"PubmedQA": PubmedQA['question'] |
|
|
} |
|
|
all_questions = ( |
|
|
list(D["GSM8k"]) + |
|
|
list(D["Olympiad"]) + |
|
|
list(D["MMMLU"]) + |
|
|
list(D["MMMU"]) + |
|
|
list(D["DeepMind Math"]) + |
|
|
list(D["Olympiad2"]) + |
|
|
list(D["ScienceQA"]) + |
|
|
list(D["PubmedQA"]) |
|
|
) |
|
|
|
|
|
emb = HuggingFaceEmbeddings( |
|
|
model_name="google/embeddinggemma-300m", |
|
|
encode_kwargs={"normalize_embeddings": True}, |
|
|
) |
|
|
texts = all_questions |
|
|
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb) |
|
|
|
|
|
|
|
|
|
|
|
emb = HuggingFaceEmbeddings( |
|
|
model_name="google/embeddinggemma-300m", |
|
|
encode_kwargs={"normalize_embeddings": True}, |
|
|
) |
|
|
D = { |
|
|
"GSM8k": GSM8k['question'], |
|
|
"Olympiad": Olympiad_math['question'], |
|
|
"Olympiad2": Olympiad_math2['question'], |
|
|
"DeepMind Math": clean_math['question'], |
|
|
"MMMLU": MMMLU['question'], |
|
|
"MMMU": MMMU['question'], |
|
|
"ScienceQA": ScienceQA['question'], |
|
|
"PubmedQA": PubmedQA['question'] |
|
|
} |
|
|
all_questions = ( |
|
|
list(D["GSM8k"]) + |
|
|
list(D["Olympiad"]) + |
|
|
list(D["MMMLU"]) + |
|
|
list(D["MMMU"]) + |
|
|
list(D["DeepMind Math"]) + |
|
|
list(D["Olympiad2"]) + |
|
|
list(D["ScienceQA"]) + |
|
|
list(D["PubmedQA"]) |
|
|
) |
|
|
texts = all_questions |
|
|
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int): |
|
|
client = InferenceClient( |
|
|
model=model_id, |
|
|
provider=provider, |
|
|
timeout=timeout, |
|
|
token=hf_token if hf_token else None, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
model = InferenceClientModel(model_id=model_id,client=client) |
|
|
agent = CodeAgent(model=model, tools=[classify_and_score, QuestionRetrieverTool]) |
|
|
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens} |
|
|
return agent |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_pipeline( |
|
|
hf_token, |
|
|
topic, |
|
|
grade, |
|
|
subject, |
|
|
target_bloom, |
|
|
target_dok, |
|
|
attempts, |
|
|
model_id, |
|
|
provider, |
|
|
timeout, |
|
|
temperature, |
|
|
max_tokens, |
|
|
task_type |
|
|
): |
|
|
|
|
|
agent = make_agent( |
|
|
hf_token=hf_token.strip(), |
|
|
model_id=model_id, |
|
|
provider=provider, |
|
|
timeout=int(timeout), |
|
|
temperature=float(temperature), |
|
|
max_tokens=int(max_tokens), |
|
|
) |
|
|
|
|
|
task = task_type.format( |
|
|
grade=grade, |
|
|
topic=topic, |
|
|
subject=subject, |
|
|
target_bloom=target_bloom, |
|
|
target_dok=target_dok, |
|
|
attempts=int(attempts) |
|
|
) |
|
|
|
|
|
|
|
|
try: |
|
|
result_text = agent.run(task, max_steps=int(attempts)*4) |
|
|
except Exception as e: |
|
|
result_text = f"ERROR: {e}" |
|
|
|
|
|
|
|
|
final_json = "" |
|
|
try: |
|
|
|
|
|
start = result_text.find("{") |
|
|
end = result_text.rfind("}") |
|
|
if start != -1 and end != -1 and end > start: |
|
|
candidate = result_text[start:end+1] |
|
|
final_json = json.dumps(json.loads(candidate), indent=2) |
|
|
except Exception: |
|
|
final_json = "" |
|
|
|
|
|
return final_json, result_text |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty") |
|
|
gr.Markdown( |
|
|
"This app uses a **CodeAgent** that *calls the scoring tool* " |
|
|
"(`classify_and_score`) after each proposal, and revises until it hits the target." |
|
|
) |
|
|
|
|
|
with gr.Accordion("API Settings", open=False): |
|
|
hf_token = gr.Textbox(label="Hugging Face Token (required)", type="password") |
|
|
model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID") |
|
|
provider = gr.Textbox(value="novita", label="Provider") |
|
|
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)") |
|
|
|
|
|
with gr.Row(): |
|
|
topic = gr.Textbox(value="Fractions", label="Topic") |
|
|
grade = gr.Dropdown( |
|
|
choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9", |
|
|
"Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"], |
|
|
value="Grade 7", |
|
|
label="Grade" |
|
|
) |
|
|
subject= gr.Textbox(value="Math", label="Subject") |
|
|
task_type = gr.Dropdown( |
|
|
choices=["TASK_TMPL", "CLASSIFY_TMPL", "GEN_TMPL", "RAG_TMPL"], |
|
|
label= "task type") |
|
|
|
|
|
with gr.Row(): |
|
|
target_bloom = gr.Dropdown( |
|
|
choices=["Remember","Understand","Apply","Analyze","Evaluate","Create","Apply+","Analyze+","Evaluate+"], |
|
|
value="Analyze", |
|
|
label="Target Bloom’s" |
|
|
) |
|
|
target_dok = gr.Dropdown( |
|
|
choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"], |
|
|
value="DOK2-DOK3", |
|
|
label="Target DOK" |
|
|
) |
|
|
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts") |
|
|
|
|
|
with gr.Accordion("Generation Controls", open=False): |
|
|
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature") |
|
|
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens") |
|
|
|
|
|
run_btn = gr.Button("Run Agent") |
|
|
|
|
|
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json") |
|
|
transcript = gr.Textbox(label="Agent Transcript", lines=18) |
|
|
|
|
|
run_btn.click( |
|
|
fn=run_pipeline, |
|
|
inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens,task_type], |
|
|
outputs=[final_json, transcript] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(share=True) |
|
|
|