File size: 15,443 Bytes
bfc2469 700d92f bfc2469 c967c51 18801af bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 06f02a7 bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 700d92f bfc2469 700d92f 1f32a04 700d92f bfc2469 1f32a04 700d92f 1f32a04 bfc2469 423136d bfc2469 423136d bfc2469 423136d 1f32a04 423136d 1f32a04 423136d 1f32a04 423136d bfc2469 1f32a04 bfc2469 1f32a04 bfc2469 423136d bfc2469 1f32a04 bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 1f32a04 bfc2469 1f32a04 423136d 1f32a04 700d92f 1f32a04 bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 423136d bfc2469 1f32a04 bfc2469 1f32a04 bfc2469 1f32a04 700d92f 1f32a04 bfc2469 423136d 1f32a04 423136d bfc2469 6837d1e 3e4013c c1b36ab 3e4013c bfc2469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import os
import json
import gradio as gr
import spaces
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool
from huggingface_hub import login
from smolagents import TransformersModel
import os
token = os.getenv("HF_Token")
login(token=token)
from level_classifier_tool import (
classify_levels_phrases,
HFEmbeddingBackend,
build_phrase_index
)
# ------------------------ Taxonomy phrases ------------------------
BLOOMS_PHRASES = {
"Remember": [
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find",
"select", "match", "choose", "give", "write", "tell", "show"
],
"Understand": [
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss",
"predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
],
"Apply": [
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform",
"execute", "carry out", "practice", "employ", "sketch"
],
"Analyze": [
"analyze", "differentiate", "organize", "structure", "break down", "distinguish",
"dissect", "examine", "compare", "contrast", "attribute", "investigate"
],
"Evaluate": [
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support",
"appraise", "recommend", "conclude", "review"
],
"Create": [
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate",
"develop", "formulate", "invent", "build"
]
}
DOK_PHRASES = {
"DOK1": [
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
"write", "tell", "show", "point out"
],
"DOK2": [
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
],
"DOK3": [
"justify", "analyze", "generalise", "compare", "construct", "investigate",
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
"probe", "explore", "develop", "formulate"
],
"DOK4": [
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
"predict outcome", "simulate"
]
}
# ------------------------ Prebuild embeddings once ------------------------
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
# ------------------------ Tool: classify and score ------------------------
@tool
def classify_and_score(
question: str,
target_bloom: str,
target_dok: str,
agg: str = "max"
) -> dict:
"""Classify a question against Bloom’s and DOK targets and return guidance.
Args:
question: The question text to evaluate for cognitive demand.
target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
or plus form (e.g., "Apply+") meaning that level or higher.
target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
or span (e.g., "DOK2-DOK3").
agg: Aggregation method over phrase similarities within a level
(choices: "mean", "max", "topk_mean").
Returns:
A dictionary with:
ok: True if both Bloom’s and DOK match the targets.
measured: Dict with best levels and per-level scores for Bloom’s and DOK.
feedback: Brief guidance describing how to adjust the question to hit targets.
"""
res = classify_levels_phrases(
question,
BLOOMS_PHRASES,
DOK_PHRASES,
backend=_backend,
prebuilt_bloom_index=_BLOOM_INDEX,
prebuilt_dok_index=_DOK_INDEX,
agg=agg,
return_phrase_matches=True
)
def _parse_target_bloom(t: str):
order = ["Remember", "Understand", "Apply", "Analyze", "Evaluate", "Create"]
if t.endswith("+"):
base = t[:-1]
if base not in order:
raise ValueError(f"Invalid Bloom target '{t}'")
return set(order[order.index(base):])
if t not in order:
raise ValueError(f"Invalid Bloom target '{t}'")
return {t}
def _parse_target_dok(t: str):
order = ["DOK1", "DOK2", "DOK3", "DOK4"]
if "-" in t:
lo, hi = t.split("-")
if lo not in order or hi not in order or order.index(lo) > order.index(hi):
raise ValueError(f"Invalid DOK range '{t}'")
return set(order[order.index(lo):order.index(hi) + 1])
if t not in order:
raise ValueError(f"Invalid DOK target '{t}'")
return {t}
try:
bloom_target_set = _parse_target_bloom(target_bloom)
dok_target_set = _parse_target_dok(target_dok)
except Exception as e:
return {
"ok": False,
"measured": {},
"feedback": (
f"Invalid targets: {e}. Use Bloom in "
"{Remember, Understand, Apply, Analyze, Evaluate, Create} "
"and DOK in {DOK1..DOK4} or ranges like 'DOK2-DOK3'."
),
}
bloom_best = res["blooms"]["best_level"]
dok_best = res["dok"]["best_level"]
bloom_ok = bloom_best in bloom_target_set
dok_ok = dok_best in dok_target_set
top_bloom_phrases = res["blooms"].get("top_phrases", {})
top_dok_phrases = res["dok"].get("top_phrases", {})
feedback_parts = []
if not bloom_ok:
feedback_parts.append(
f"Shift Bloom’s from {bloom_best} toward {sorted(list(bloom_target_set))}. "
f"Top cues: {top_bloom_phrases.get(bloom_best, [])[:3]}"
)
if not dok_ok:
feedback_parts.append(
f"Shift DOK from {dok_best} toward {sorted(list(dok_target_set))}. "
f"Top cues: {top_dok_phrases.get(dok_best, [])[:3]}"
)
return {
"ok": bool(bloom_ok and dok_ok),
"measured": {
"bloom_best": bloom_best,
"bloom_scores": res["blooms"]["scores"],
"dok_best": dok_best,
"dok_scores": res["dok"]["scores"],
},
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
}
# ------------------------ Backend selection + GPU-wrapped local loader ------------------------
_LOCAL_MODEL_CACHE = {"model": None, "model_id": None}
@spaces.GPU(duration=30) # request GPU only when loading/using local model
def get_local_model_gpu(model_id: str):
"""
Load and cache a local Transformers model for smolagents on GPU.
Decorated so Spaces knows this task needs a GPU.
"""
# Import here to keep Hosted mode lightweight.
try:
from smolagents import TransformersModel # provided by smolagents
except Exception as e:
raise RuntimeError(
"Local backend requires 'TransformersModel' from smolagents. "
"Please ensure your smolagents version provides it."
) from e
if (
_LOCAL_MODEL_CACHE["model"] is not None
and _LOCAL_MODEL_CACHE["model_id"] == model_id
):
return _LOCAL_MODEL_CACHE["model"]
local_model = TransformersModel(
model_id=model_id,
device_map="auto" # lets accelerate pick the best device(s)
)
_LOCAL_MODEL_CACHE["model"] = local_model
_LOCAL_MODEL_CACHE["model_id"] = model_id
return local_model
def make_agent(
backend_choice: str, # "Hosted API" | "Local GPU"
hf_token: str,
model_id: str,
timeout: int,
temperature: float,
max_tokens: int
):
if backend_choice == "Local GPU":
# This call is GPU-annotated; Spaces will allocate a GPU for it.
model = get_local_model_gpu(model_id)
else:
client = InferenceClient(
model=model_id,
timeout=timeout,
token=(hf_token or None),
)
model = InferenceClientModel(client=client)
agent = CodeAgent(model=model, tools=[classify_and_score])
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens}
return agent
# ------------------------ Agent task template -----------------------------
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".
After you propose a candidate, you MUST immediately call:
classify_and_score(
question=<just the question text>,
target_bloom="{target_bloom}",
target_dok="{target_dok}",
agg="max"
)
Use the returned dict:
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
Repeat up to {attempts} attempts.
Keep answers concise.
Additionally, when you call classify_and_score, pass the exact question text you propose.
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
'''
# ------------------------ Utility: robust JSON extractor ------------------
def extract_top_level_json(s: str) -> str:
start = s.find("{")
if start == -1:
return ""
depth = 0
for i in range(start, len(s)):
ch = s[i]
if ch == "{":
depth += 1
elif ch == "}":
depth -= 1
if depth == 0:
candidate = s[start:i + 1]
try:
json.loads(candidate) # validate
return candidate
except Exception:
return ""
return ""
# ------------------------ Pipeline ---------------------------------------
def run_pipeline(
backend_choice,
hf_token,
topic,
grade,
subject,
target_bloom,
target_dok,
attempts,
model_id,
timeout,
temperature,
max_tokens
):
try:
agent = make_agent(
backend_choice=backend_choice,
hf_token=(hf_token or "").strip(),
model_id=model_id,
timeout=int(timeout),
temperature=float(temperature),
max_tokens=int(max_tokens),
)
except Exception as e:
err = f"ERROR initializing backend '{backend_choice}': {e}"
return "", err
task = TASK_TMPL.format(
grade=grade,
topic=topic,
subject=subject,
target_bloom=target_bloom,
target_dok=target_dok,
attempts=int(attempts)
)
try:
result_text = agent.run(task, max_steps=int(attempts) * 4)
except Exception as e:
result_text = f"ERROR while running the agent: {e}"
final_json = ""
candidate = extract_top_level_json(result_text or "")
if candidate:
try:
final_json = json.dumps(json.loads(candidate), indent=2)
except Exception:
final_json = ""
return final_json, result_text
# ------------------------ Gradio UI --------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
gr.Markdown(
"Use a **CodeAgent** that calls the scoring tool (`classify_and_score`) after each proposal, "
"and revises until it hits your Bloom/DOK target."
)
with gr.Accordion("API / Backend Settings", open=True):
backend_choice = gr.Radio(
choices=["Hosted API", "Local GPU"],
value="Hosted API",
label="Inference Backend"
)
with gr.Row():
hf_token = gr.Textbox(
label="Hugging Face Token (required for private/hosted endpoints)",
type="password",
visible=True
)
model_id = gr.Textbox(
value="swiss-ai/Apertus-70B-Instruct-2509",
label="Model ID (repo id for Hosted, or local repo for GPU)"
)
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s, Hosted API only)")
with gr.Row():
topic = gr.Textbox(value="Fractions", label="Topic")
grade = gr.Dropdown(
choices=[
"Grade 1", "Grade 2", "Grade 3", "Grade 4", "Grade 5", "Grade 6",
"Grade 7", "Grade 8", "Grade 9",
"Grade 10", "Grade 11", "Grade 12",
"Under Graduate", "Post Graduate"
],
value="Grade 7",
label="Grade"
)
subject = gr.Textbox(value="Math", label="Subject")
with gr.Row():
target_bloom = gr.Dropdown(
choices=["Remember", "Understand", "Apply", "Analyze", "Evaluate", "Create"],
value="Analyze",
label="Target Bloom’s"
)
target_dok = gr.Dropdown(
choices=["DOK1", "DOK2", "DOK3", "DOK4", "DOK1-DOK2", "DOK2-DOK3", "DOK3-DOK4"],
value="DOK2-DOK3",
label="Target Depth of Knowledge"
)
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
with gr.Accordion("⚙️ Generation Controls", open=False):
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
backend_tips = gr.Markdown(
"*Hosted API:* uses Hugging Face Inference endpoints. Provide a token if needed.\n\n"
"*Local GPU:* loads the model into the Space with `TransformersModel (device_map='auto')`. "
"Ensure your Space has a GPU and enough VRAM for the selected model."
)
run_btn = gr.Button("Run Agent 🚀")
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
transcript = gr.Textbox(label="Agent Transcript", lines=18)
def _toggle_backend_fields(choice):
return (
gr.update(visible=(choice == "Hosted API")), # hf_token
gr.update(visible=True), # model_id always visible
gr.update(visible=(choice == "Hosted API")) # timeout slider
)
backend_choice.change(
_toggle_backend_fields,
inputs=[backend_choice],
outputs=[hf_token, model_id, timeout]
)
run_btn.click(
fn=run_pipeline,
inputs=[
backend_choice, hf_token, topic, grade, subject,
target_bloom, target_dok, attempts, model_id,
timeout, temperature, max_tokens
],
outputs=[final_json, transcript]
)
if __name__ == "__main__" or os.getenv("SYSTEM") == "spaces":
try:
get_local_model_gpu(model_id) # triggers GPU allocation during startup
except Exception as e:
# don't crash the app if warmup fails; logs will show details
print("Warmup failed:", e)
demo.launch()
|