File size: 7,598 Bytes
f296c60
 
 
 
bfc2469
 
 
 
71fa3f5
f296c60
c967c51
f296c60
 
 
bfc2469
 
 
 
f296c60
 
 
 
423136d
bfc2469
 
f296c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc2469
f296c60
 
 
 
 
 
bfc2469
f296c60
bfc2469
f296c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc2469
f296c60
1f32a04
 
f296c60
 
 
 
 
 
 
bfc2469
1f32a04
f296c60
 
 
 
 
bfc2469
423136d
bfc2469
f296c60
423136d
f296c60
bfc2469
 
 
 
 
 
 
 
 
f296c60
bfc2469
 
f296c60
 
bfc2469
f296c60
 
 
 
 
 
 
 
 
bfc2469
f296c60
bfc2469
 
 
 
 
 
 
 
f296c60
bfc2469
f296c60
bfc2469
f296c60
bfc2469
f296c60
bfc2469
f296c60
 
 
 
 
 
bfc2469
f296c60
 
bfc2469
 
 
f296c60
bfc2469
 
 
f296c60
 
bfc2469
 
f296c60
 
 
 
 
bfc2469
 
 
 
f296c60
 
bfc2469
 
 
f296c60
 
b101ffe
f296c60
bfc2469
 
 
f296c60
bfc2469
 
 
 
f296c60
bfc2469
f296c60
bfc2469
 
 
24cd6d0
bfc2469
 
 
f296c60
bfc2469
 
 
 
 
 
3a62e64
bfc2469
 
 
f296c60
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Create a self-contained Gradio app that uses the agent-driven loop (Option A)
# It expects `level_classifier_tool.py` to be colocated (or installed on PYTHONPATH).
import sys
sys.path.append(r"C:\Users\Sarthak\OneDrive - UT Cloud\thesis\HF_Agent\src")  # use raw string because of spaces
import json
import gradio as gr
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_index.core import VectorStoreIndex, Document
from huggingface_hub import login
from smolagents import tool
from all_datasets import *
from level_classifier_tool_2 import (
    classify_levels_phrases,
    HFEmbeddingBackend,
    build_phrase_index
)
from task_temp import TASK_TMPL, CLASSIFY_TMPL, GEN_TMPL, RAG_TMPL
from all_tools import classify_and_score, QuestionRetrieverTool
from phrases import BLOOMS_PHRASES, DOK_PHRASES
# Prebuild embeddings once
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
D = {
    "GSM8k": GSM8k['question'],
    "Olympiad": Olympiad_math['question'],
    "Olympiad2": Olympiad_math2['question'],
    "DeepMind Math": clean_math['question'],
    "MMMLU": MMMLU['question'],
    "MMMU": MMMU['question'],
    "ScienceQA": ScienceQA['question'],
    "PubmedQA": PubmedQA['question']
}
all_questions = (
    list(D["GSM8k"]) +
    list(D["Olympiad"]) +
    list(D["MMMLU"]) +
    list(D["MMMU"]) +
    list(D["DeepMind Math"]) +
    list(D["Olympiad2"]) +
    list(D["ScienceQA"]) +
    list(D["PubmedQA"])
)

emb = HuggingFaceEmbeddings(
    model_name="google/embeddinggemma-300m",
    encode_kwargs={"normalize_embeddings": True},
)
texts = all_questions
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)

# ------------------------ Scoring TOOL -----------------------------------

emb = HuggingFaceEmbeddings(
    model_name="google/embeddinggemma-300m",
    encode_kwargs={"normalize_embeddings": True},
)
D = {
    "GSM8k": GSM8k['question'],
    "Olympiad": Olympiad_math['question'],
    "Olympiad2": Olympiad_math2['question'],
    "DeepMind Math": clean_math['question'],
    "MMMLU": MMMLU['question'],
    "MMMU": MMMU['question'],
    "ScienceQA": ScienceQA['question'],
    "PubmedQA": PubmedQA['question']
}
all_questions = (
    list(D["GSM8k"]) +
    list(D["Olympiad"]) +
    list(D["MMMLU"]) +
    list(D["MMMU"]) +
    list(D["DeepMind Math"]) +
    list(D["Olympiad2"]) +
    list(D["ScienceQA"]) +
    list(D["PubmedQA"])
)
texts = all_questions
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)

# ------------------------ Retriever TOOL -----------------------------------


# ------------------------ Agent setup with timeout ------------------------
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
    client = InferenceClient(
        model=model_id,
        provider=provider,
        timeout=timeout,
        token=hf_token if hf_token else None,
    )

    # Bind generation params by partially applying via model kwargs.
    # smolagents InferenceClientModel currently accepts client only; we pass runtime params in task text.
    model = InferenceClientModel(model_id=model_id,client=client)
    agent = CodeAgent(model=model, tools=[classify_and_score, QuestionRetrieverTool])
    agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens}  # attach for reference
    return agent


# ------------------------ Agent task template -----------------------------

# ------------------------ Gradio glue ------------------------------------
def run_pipeline(
    hf_token,
    topic,
    grade,
    subject,
    target_bloom,
    target_dok,
    attempts,
    model_id,
    provider,
    timeout,
    temperature,
    max_tokens,
    task_type
):
    # Build agent per run (or cache if you prefer)
    agent = make_agent(
        hf_token=hf_token.strip(),
        model_id=model_id,
        provider=provider,
        timeout=int(timeout),
        temperature=float(temperature),
        max_tokens=int(max_tokens),
    )

    task = task_type.format(
        grade=grade,
        topic=topic,
        subject=subject,
        target_bloom=target_bloom,
        target_dok=target_dok,
        attempts=int(attempts)
    )

    # The agent will internally call the tool
    try:
        result_text = agent.run(task, max_steps=int(attempts)*4)
    except Exception as e:
        result_text = f"ERROR: {e}"

    # Try to extract final JSON
    final_json = ""
    try:
        # find JSON object in result_text (simple heuristic)
        start = result_text.find("{")
        end = result_text.rfind("}")
        if start != -1 and end != -1 and end > start:
            candidate = result_text[start:end+1]
            final_json = json.dumps(json.loads(candidate), indent=2)
    except Exception:
        final_json = ""

    return final_json, result_text


with gr.Blocks() as demo:
    gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
    gr.Markdown(
        "This app uses a **CodeAgent** that *calls the scoring tool* "
        "(`classify_and_score`) after each proposal, and revises until it hits the target."
    )

    with gr.Accordion("API Settings", open=False):
        hf_token = gr.Textbox(label="Hugging Face Token (required)", type="password")
        model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
        provider = gr.Textbox(value="novita", label="Provider")
        timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")

    with gr.Row():
        topic = gr.Textbox(value="Fractions", label="Topic")
        grade = gr.Dropdown(
            choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
                     "Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
            value="Grade 7",
            label="Grade"
        )
        subject= gr.Textbox(value="Math", label="Subject")
        task_type = gr.Dropdown(
            choices=["TASK_TMPL", "CLASSIFY_TMPL", "GEN_TMPL", "RAG_TMPL"],
        label= "task type")

    with gr.Row():
        target_bloom = gr.Dropdown(
            choices=["Remember","Understand","Apply","Analyze","Evaluate","Create","Apply+","Analyze+","Evaluate+"],
            value="Analyze",
            label="Target Bloom’s"
        )
        target_dok = gr.Dropdown(
            choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
            value="DOK2-DOK3",
            label="Target DOK"
        )
        attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")

    with gr.Accordion("Generation Controls", open=False):
        temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
        max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")

    run_btn = gr.Button("Run Agent")

    final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
    transcript = gr.Textbox(label="Agent Transcript", lines=18)

    run_btn.click(
        fn=run_pipeline,
        inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens,task_type],
        outputs=[final_json, transcript]
    )

if __name__ == "__main__":
    demo.launch(share=True)