File size: 10,815 Bytes
bfc2469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import json
import gradio as gr
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool
from level_classifier_tool import (
classify_levels_phrases,
HFEmbeddingBackend,
build_phrase_index
)
BLOOMS_PHRASES = {
"Remember": [
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find", "select", "match", "choose", "give", "write", "tell", "show"
],
"Understand": [
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss", "predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
],
"Apply": [
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform", "execute", "carry out", "practice", "employ", "sketch"
],
"Analyze": [
"analyze", "differentiate", "organize", "structure", "break down", "distinguish", "dissect", "examine", "compare", "contrast", "attribute", "investigate"
],
"Evaluate": [
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support", "appraise", "recommend", "conclude", "review"
],
"Create": [
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate", "develop", "formulate", "invent", "build"
]
}
DOK_PHRASES = {
"DOK1": [
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
"write", "tell", "show", "point out"
],
"DOK2": [
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
],
"DOK3": [
"justify", "analyze", "generalise", "compare", "construct", "investigate",
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
"probe", "explore", "develop", "formulate"
],
"DOK4": [
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
"predict outcome", "simulate"
]
}
# Prebuild embeddings once
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
@tool
def classify_and_score(
question: str,
target_bloom: str,
target_dok: str,
agg: str = "max"
) -> dict:
"""Classify a question against Bloom’s and DOK targets and return guidance.
Args:
question: The question text to evaluate for cognitive demand.
target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
or plus form (e.g., "Apply+") meaning that level or higher.
target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
or span (e.g., "DOK2-DOK3").
agg: Aggregation method over phrase similarities within a level
(choices: "mean", "max", "topk_mean").
Returns:
A dictionary with:
ok: True if both Bloom’s and DOK match the targets.
measured: Dict with best levels and per-level scores for Bloom’s and DOK.
feedback: Brief guidance describing how to adjust the question to hit targets.
"""
res = classify_levels_phrases(
question,
BLOOMS_PHRASES,
DOK_PHRASES,
backend=_backend,
prebuilt_bloom_index=_BLOOM_INDEX,
prebuilt_dok_index=_DOK_INDEX,
agg=agg,
return_phrase_matches=True
)
def _parse_target_bloom(t: str):
order = ["Remember","Understand","Apply","Analyze","Evaluate","Create"]
if t.endswith("+"):
base = t[:-1]
return set(order[order.index(base):])
return {t}
def _parse_target_dok(t: str):
order = ["DOK1","DOK2","DOK3","DOK4"]
if "-" in t:
lo, hi = t.split("-")
return set(order[order.index(lo):order.index(hi)+1])
return {t}
bloom_target_set = _parse_target_bloom(target_bloom)
dok_target_set = _parse_target_dok(target_dok)
bloom_best = res["blooms"]["best_level"]
dok_best = res["dok"]["best_level"]
bloom_ok = bloom_best in bloom_target_set
dok_ok = dok_best in dok_target_set
feedback_parts = []
if not bloom_ok:
feedback_parts.append(
f"Shift Bloom’s from {bloom_best} toward {sorted(bloom_target_set)}. "
f"Top cues: {res['blooms']['top_phrases'].get(bloom_best, [])[:3]}"
)
if not dok_ok:
feedback_parts.append(
f"Shift DOK from {dok_best} toward {sorted(dok_target_set)}. "
f"Top cues: {res['dok']['top_phrases'].get(dok_best, [])[:3]}"
)
return {
"ok": bool(bloom_ok and dok_ok),
"measured": {
"bloom_best": bloom_best,
"bloom_scores": res["blooms"]["scores"],
"dok_best": dok_best,
"dok_scores": res["dok"]["scores"],
},
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
}
# ------------------------ Agent setup with timeout ------------------------
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
client = InferenceClient(
model=model_id,
provider=provider,
timeout=timeout,
token=hf_token if hf_token else None,
)
model = InferenceClientModel(client=client)
agent = CodeAgent(model=model, tools=[classify_and_score])
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens} # attach for reference
return agent
# ------------------------ Agent task template -----------------------------
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".
After you propose a candidate, you MUST immediately call:
classify_and_score(
question=<just the question text>,
target_bloom="{target_bloom}",
target_dok="{target_dok}",
agg="max"
)
Use the returned dict:
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
Repeat up to {attempts} attempts.
Keep answers concise.
Additionally, when you call classify_and_score, pass the exact question text you propose.
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
'''
# ------------------------ Gradio glue ------------------------------------
def run_pipeline(
hf_token,
topic,
grade,
subject,
target_bloom,
target_dok,
attempts,
model_id,
provider,
timeout,
temperature,
max_tokens
):
# Build agent per run (or cache if you prefer)
agent = make_agent(
hf_token=hf_token.strip(),
model_id=model_id,
provider=provider,
timeout=int(timeout),
temperature=float(temperature),
max_tokens=int(max_tokens),
)
task = TASK_TMPL.format(
grade=grade,
topic=topic,
subject=subject,
target_bloom=target_bloom,
target_dok=target_dok,
attempts=int(attempts)
)
# The agent will internally call the tool
try:
result_text = agent.run(task, max_steps=int(attempts)*4)
except Exception as e:
result_text = f"ERROR: {e}"
# Try to extract final JSON
final_json = ""
try:
# find JSON object in result_text (simple heuristic)
start = result_text.find("{")
end = result_text.rfind("}")
if start != -1 and end != -1 and end > start:
candidate = result_text[start:end+1]
final_json = json.dumps(json.loads(candidate), indent=2)
except Exception:
final_json = ""
return final_json, result_text
with gr.Blocks() as demo:
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
gr.Markdown(
"This app uses a **CodeAgent** that *calls the scoring tool* "
"(`classify_and_score`) after each proposal, and revises until it hits the target."
)
with gr.Accordion("API Settings", open=False):
hf_token = gr.Textbox(label="Hugging Face Token (required if the endpoint needs auth)", type="password")
model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
provider = gr.Textbox(value="novita", label="Provider")
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")
with gr.Row():
topic = gr.Textbox(value="Fractions", label="Topic")
grade = gr.Dropdown(
choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
"Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
value="Grade 7",
label="Grade"
)
subject= gr.Textbox(value="Math", label="Subject")
with gr.Row():
target_bloom = gr.Dropdown(
choices=["Remember","Understand","Apply","Analyze","Evaluate","Create"],
value="Analyze",
label="Target Bloom’s"
)
target_dok = gr.Dropdown(
choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
value="DOK2-DOK3",
label="Target Depth of Knowledge"
)
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
with gr.Accordion("⚙️ Generation Controls", open=False):
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
run_btn = gr.Button("Run Agent 🚀")
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
transcript = gr.Textbox(label="Agent Transcript", lines=18)
run_btn.click(
fn=run_pipeline,
inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens],
outputs=[final_json, transcript]
)
if __name__ == "__main__":
demo.launch()
|