File size: 10,815 Bytes
bfc2469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import json
import gradio as gr
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool

from level_classifier_tool import (
    classify_levels_phrases,
    HFEmbeddingBackend,
    build_phrase_index
)
BLOOMS_PHRASES = {
    "Remember": [  
        "define", "list", "recall", "identify", "state", "label", "name", "recognize", "find", "select", "match", "choose", "give", "write", "tell", "show"
    ],
    "Understand": [  
        "classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss", "predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
    ],
    "Apply": [  
        "apply", "solve", "use", "demonstrate", "calculate", "implement", "perform", "execute", "carry out", "practice", "employ", "sketch"
    ],
    "Analyze": [  
        "analyze", "differentiate", "organize", "structure", "break down", "distinguish", "dissect", "examine", "compare", "contrast", "attribute", "investigate"
    ],
    "Evaluate": [  
        "evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support", "appraise", "recommend", "conclude", "review"
    ],
    "Create": [  
        "create", "design", "compose", "plan", "construct", "produce", "devise", "generate", "develop", "formulate", "invent", "build"
    ]
}

DOK_PHRASES = {
    "DOK1": [
        "define", "list", "recall", "compute", "identify", "state", "label", "how many",
        "name", "recognize", "find", "determine", "select", "match", "choose", "give", 
        "write", "tell", "show", "point out"
    ],
    "DOK2": [
        "classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
        "categorize", "group", "compare", "contrast", "distinguish", "make observations", 
        "collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict", 
        "approximate", "demonstrate", "illustrate", "describe", "analyze data"
    ],
    "DOK3": [
        "justify", "analyze", "generalise", "compare", "construct", "investigate",
        "support", "defend", "argue", "examine", "differentiate", "criticize", "debate", 
        "test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect", 
        "probe", "explore", "develop", "formulate"
    ],
    "DOK4": [
        "design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
        "compose", "plan", "invent", "devise", "generate", "build", "construct", "produce", 
        "formulate", "improve", "revise", "assess", "appraise", "judge", "recommend", 
        "predict outcome", "simulate"
    ]
}

# Prebuild embeddings once
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)

@tool
def classify_and_score(
    question: str,
    target_bloom: str,
    target_dok: str,
    agg: str = "max"
) -> dict:
    """Classify a question against Bloom’s and DOK targets and return guidance.
    
    Args:
        question: The question text to evaluate for cognitive demand.
        target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
            or plus form (e.g., "Apply+") meaning that level or higher.
        target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
            or span (e.g., "DOK2-DOK3").
        agg: Aggregation method over phrase similarities within a level
            (choices: "mean", "max", "topk_mean").
    
    Returns:
        A dictionary with:
            ok: True if both Bloom’s and DOK match the targets.
            measured: Dict with best levels and per-level scores for Bloom’s and DOK.
            feedback: Brief guidance describing how to adjust the question to hit targets.
    """
    res = classify_levels_phrases(
        question,
        BLOOMS_PHRASES,
        DOK_PHRASES,
        backend=_backend,
        prebuilt_bloom_index=_BLOOM_INDEX,
        prebuilt_dok_index=_DOK_INDEX,
        agg=agg,
        return_phrase_matches=True
    )

    def _parse_target_bloom(t: str):
        order = ["Remember","Understand","Apply","Analyze","Evaluate","Create"]
        if t.endswith("+"):
            base = t[:-1]
            return set(order[order.index(base):])
        return {t}

    def _parse_target_dok(t: str):
        order = ["DOK1","DOK2","DOK3","DOK4"]
        if "-" in t:
            lo, hi = t.split("-")
            return set(order[order.index(lo):order.index(hi)+1])
        return {t}

    bloom_target_set = _parse_target_bloom(target_bloom)
    dok_target_set = _parse_target_dok(target_dok)

    bloom_best = res["blooms"]["best_level"]
    dok_best = res["dok"]["best_level"]

    bloom_ok = bloom_best in bloom_target_set
    dok_ok = dok_best in dok_target_set

    feedback_parts = []
    if not bloom_ok:
        feedback_parts.append(
            f"Shift Bloom’s from {bloom_best} toward {sorted(bloom_target_set)}. "
            f"Top cues: {res['blooms']['top_phrases'].get(bloom_best, [])[:3]}"
        )
    if not dok_ok:
        feedback_parts.append(
            f"Shift DOK from {dok_best} toward {sorted(dok_target_set)}. "
            f"Top cues: {res['dok']['top_phrases'].get(dok_best, [])[:3]}"
        )

    return {
        "ok": bool(bloom_ok and dok_ok),
        "measured": {
            "bloom_best": bloom_best,
            "bloom_scores": res["blooms"]["scores"],
            "dok_best": dok_best,
            "dok_scores": res["dok"]["scores"],
        },
        "feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
    }


# ------------------------ Agent setup with timeout ------------------------
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
    client = InferenceClient(
        model=model_id,
        provider=provider,
        timeout=timeout,
        token=hf_token if hf_token else None,
    )

    model = InferenceClientModel(client=client)
    agent = CodeAgent(model=model, tools=[classify_and_score])
    agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens}  # attach for reference
    return agent


# ------------------------ Agent task template -----------------------------
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".

After you propose a candidate, you MUST immediately call:
classify_and_score(
    question=<just the question text>,
    target_bloom="{target_bloom}",
    target_dok="{target_dok}",
    agg="max"
)

Use the returned dict:
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
Repeat up to {attempts} attempts.
Keep answers concise.
Additionally, when you call classify_and_score, pass the exact question text you propose.
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
'''


# ------------------------ Gradio glue ------------------------------------
def run_pipeline(
    hf_token,
    topic,
    grade,
    subject,
    target_bloom,
    target_dok,
    attempts,
    model_id,
    provider,
    timeout,
    temperature,
    max_tokens
):
    # Build agent per run (or cache if you prefer)
    agent = make_agent(
        hf_token=hf_token.strip(),
        model_id=model_id,
        provider=provider,
        timeout=int(timeout),
        temperature=float(temperature),
        max_tokens=int(max_tokens),
    )

    task = TASK_TMPL.format(
        grade=grade,
        topic=topic,
        subject=subject,
        target_bloom=target_bloom,
        target_dok=target_dok,
        attempts=int(attempts)
    )

    # The agent will internally call the tool
    try:
        result_text = agent.run(task, max_steps=int(attempts)*4)
    except Exception as e:
        result_text = f"ERROR: {e}"

    # Try to extract final JSON
    final_json = ""
    try:
        # find JSON object in result_text (simple heuristic)
        start = result_text.find("{")
        end = result_text.rfind("}")
        if start != -1 and end != -1 and end > start:
            candidate = result_text[start:end+1]
            final_json = json.dumps(json.loads(candidate), indent=2)
    except Exception:
        final_json = ""

    return final_json, result_text


with gr.Blocks() as demo:
    gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
    gr.Markdown(
        "This app uses a **CodeAgent** that *calls the scoring tool* "
        "(`classify_and_score`) after each proposal, and revises until it hits the target."
    )

    with gr.Accordion("API Settings", open=False):
        hf_token = gr.Textbox(label="Hugging Face Token (required if the endpoint needs auth)", type="password")
        model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
        provider = gr.Textbox(value="novita", label="Provider")
        timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")

    with gr.Row():
        topic = gr.Textbox(value="Fractions", label="Topic")
        grade = gr.Dropdown(
            choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
                     "Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
            value="Grade 7",
            label="Grade"
        )
        subject= gr.Textbox(value="Math", label="Subject")

    with gr.Row():
        target_bloom = gr.Dropdown(
            choices=["Remember","Understand","Apply","Analyze","Evaluate","Create"],
            value="Analyze",
            label="Target Bloom’s"
        )
        target_dok = gr.Dropdown(
            choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
            value="DOK2-DOK3",
            label="Target Depth of Knowledge"
        )
        attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")

    with gr.Accordion("⚙️ Generation Controls", open=False):
        temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
        max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")

    run_btn = gr.Button("Run Agent 🚀")

    final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
    transcript = gr.Textbox(label="Agent Transcript", lines=18)

    run_btn.click(
        fn=run_pipeline,
        inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens],
        outputs=[final_json, transcript]
    )

if __name__ == "__main__":
    demo.launch()