Commit
Β·
68bc627
1
Parent(s):
3648fa8
initial commit
Browse files- app.py +388 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from plonk.pipe import PlonkPipeline
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from streamlit_extras.colored_header import colored_header
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
|
| 12 |
+
# Set page config
|
| 13 |
+
st.set_page_config(
|
| 14 |
+
page_title="Around the World in 80 Timesteps", page_icon="πΊοΈ", layout="wide"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
PROJECT_ROOT = Path(__file__).parent.parent.absolute()
|
| 19 |
+
# Define checkpoint path
|
| 20 |
+
CHECKPOINT_DIR = PROJECT_ROOT / "checkpoints"
|
| 21 |
+
|
| 22 |
+
MODEL_NAMES = {
|
| 23 |
+
"PLONK_YFCC": "nicolas-dufour/PLONK_YFCC",
|
| 24 |
+
"PLONK_OSV_5M": "nicolas-dufour/PLONK_OSV_5M",
|
| 25 |
+
"PLONK_iNaturalist": "nicolas-dufour/PLONK_iNaturalist",
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@st.cache_resource
|
| 30 |
+
def load_model(model_name):
|
| 31 |
+
"""Load the model and cache it to prevent reloading"""
|
| 32 |
+
try:
|
| 33 |
+
pipe = PlonkPipeline(model_path=model_name)
|
| 34 |
+
return pipe
|
| 35 |
+
except Exception as e:
|
| 36 |
+
st.error(f"Error loading model: {str(e)}")
|
| 37 |
+
st.stop()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
PIPES = {model_name: load_model(MODEL_NAMES[model_name]) for model_name in MODEL_NAMES}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def predict_location(image, model_name, cfg=0.0, num_samples=256):
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
batch = {"img": [], "emb": []}
|
| 46 |
+
|
| 47 |
+
# If image is already a PIL Image, use it directly
|
| 48 |
+
if isinstance(image, Image.Image):
|
| 49 |
+
img = image.convert("RGB")
|
| 50 |
+
else:
|
| 51 |
+
img = Image.open(image).convert("RGB")
|
| 52 |
+
|
| 53 |
+
pipe = PIPES[model_name]
|
| 54 |
+
|
| 55 |
+
# Get regular predictions
|
| 56 |
+
predicted_gps = pipe(img, batch_size=num_samples, cfg=cfg, num_steps=32)
|
| 57 |
+
|
| 58 |
+
# Get single high-confidence prediction
|
| 59 |
+
high_conf_gps = pipe(img, batch_size=1, cfg=2.0, num_steps=32)
|
| 60 |
+
return {
|
| 61 |
+
"lat": predicted_gps[:, 0].astype(float).tolist(),
|
| 62 |
+
"lon": predicted_gps[:, 1].astype(float).tolist(),
|
| 63 |
+
"high_conf_lat": high_conf_gps[0, 0].astype(float),
|
| 64 |
+
"high_conf_lon": high_conf_gps[0, 1].astype(float),
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def load_example_images():
|
| 69 |
+
"""Load example images from the examples directory"""
|
| 70 |
+
examples_dir = Path(__file__).parent / "examples"
|
| 71 |
+
if not examples_dir.exists():
|
| 72 |
+
st.error(
|
| 73 |
+
"""
|
| 74 |
+
Examples directory not found. Please create the following structure:
|
| 75 |
+
demo/
|
| 76 |
+
βββ examples/
|
| 77 |
+
βββ eiffel_tower.jpg
|
| 78 |
+
βββ colosseum.jpg
|
| 79 |
+
βββ taj_mahal.jpg
|
| 80 |
+
βββ statue_liberty.jpg
|
| 81 |
+
βββ sydney_opera.jpg
|
| 82 |
+
"""
|
| 83 |
+
)
|
| 84 |
+
return {}
|
| 85 |
+
|
| 86 |
+
examples = {}
|
| 87 |
+
for img_path in examples_dir.glob("*.jpg"):
|
| 88 |
+
# Use filename without extension as the key
|
| 89 |
+
name = img_path.stem.replace("_", " ").title()
|
| 90 |
+
examples[name] = str(img_path)
|
| 91 |
+
|
| 92 |
+
if not examples:
|
| 93 |
+
st.warning("No example images found in the examples directory.")
|
| 94 |
+
|
| 95 |
+
return examples
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def resize_image_for_display(image, max_size=400):
|
| 99 |
+
"""Resize image while maintaining aspect ratio"""
|
| 100 |
+
# Get current size
|
| 101 |
+
width, height = image.size
|
| 102 |
+
|
| 103 |
+
# Calculate ratio to maintain aspect ratio
|
| 104 |
+
if width > height:
|
| 105 |
+
if width > max_size:
|
| 106 |
+
ratio = max_size / width
|
| 107 |
+
new_size = (max_size, int(height * ratio))
|
| 108 |
+
else:
|
| 109 |
+
if height > max_size:
|
| 110 |
+
ratio = max_size / height
|
| 111 |
+
new_size = (int(width * ratio), max_size)
|
| 112 |
+
|
| 113 |
+
# Only resize if image is larger than max_size
|
| 114 |
+
if width > max_size or height > max_size:
|
| 115 |
+
return image.resize(new_size, Image.Resampling.LANCZOS)
|
| 116 |
+
return image
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def load_image_from_url(url):
|
| 120 |
+
"""Load an image from a URL"""
|
| 121 |
+
try:
|
| 122 |
+
response = requests.get(url)
|
| 123 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 124 |
+
return Image.open(BytesIO(response.content))
|
| 125 |
+
except Exception as e:
|
| 126 |
+
st.error(f"Error loading image from URL: {str(e)}")
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def main():
|
| 131 |
+
# Custom CSS
|
| 132 |
+
st.markdown(
|
| 133 |
+
"""
|
| 134 |
+
<style>
|
| 135 |
+
.main {
|
| 136 |
+
padding: 0rem 1rem;
|
| 137 |
+
}
|
| 138 |
+
.stButton>button {
|
| 139 |
+
width: 100%;
|
| 140 |
+
background-color: #FF4B4B;
|
| 141 |
+
color: white;
|
| 142 |
+
border: none;
|
| 143 |
+
padding: 0.5rem 1rem;
|
| 144 |
+
border-radius: 0.5rem;
|
| 145 |
+
}
|
| 146 |
+
.stButton>button:hover {
|
| 147 |
+
background-color: #FF6B6B;
|
| 148 |
+
}
|
| 149 |
+
.prediction-box {
|
| 150 |
+
background-color: #f0f2f6;
|
| 151 |
+
padding: 1.5rem;
|
| 152 |
+
border-radius: 0.5rem;
|
| 153 |
+
margin: 1rem 0;
|
| 154 |
+
}
|
| 155 |
+
/* New styles for image containers */
|
| 156 |
+
.upload-container {
|
| 157 |
+
max-height: 300px;
|
| 158 |
+
overflow-y: auto;
|
| 159 |
+
margin-bottom: 1rem;
|
| 160 |
+
}
|
| 161 |
+
.examples-container {
|
| 162 |
+
max-height: 200px;
|
| 163 |
+
display: flex;
|
| 164 |
+
gap: 10px;
|
| 165 |
+
}
|
| 166 |
+
.stTabs [data-baseweb="tab-panel"] {
|
| 167 |
+
padding-top: 1rem;
|
| 168 |
+
}
|
| 169 |
+
</style>
|
| 170 |
+
""",
|
| 171 |
+
unsafe_allow_html=True,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Header with custom styling
|
| 175 |
+
colored_header(
|
| 176 |
+
label="πΊοΈ Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation",
|
| 177 |
+
description="Upload an image and our model, PLONK, will predict possible locations! In red we will sample one point with guidance scale 2.0 for the best guess. <br> <br> Project page: https://nicolas-dufour.github.io/plonk",
|
| 178 |
+
color_name="red-70",
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Adjust column ratio to give 2/3 of the space to the map
|
| 182 |
+
col1, col2 = st.columns([1, 2], gap="large")
|
| 183 |
+
|
| 184 |
+
with col1:
|
| 185 |
+
# Add model selection before the sliders
|
| 186 |
+
model_name = st.selectbox(
|
| 187 |
+
"π€ Select Model",
|
| 188 |
+
options=MODEL_NAMES.keys(),
|
| 189 |
+
index=0, # Default to YFCC
|
| 190 |
+
help="Choose which PLONK model variant to use for prediction.",
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Modify the slider columns to accommodate both controls
|
| 194 |
+
col_slider1, col_slider2 = st.columns([0.5, 0.5])
|
| 195 |
+
with col_slider1:
|
| 196 |
+
cfg_value = st.slider(
|
| 197 |
+
"π― Guidance scale",
|
| 198 |
+
min_value=0.0,
|
| 199 |
+
max_value=5.0,
|
| 200 |
+
value=0.0,
|
| 201 |
+
step=0.1,
|
| 202 |
+
help="Scale for classifier-free guidance during sampling. A small value makes the model predictions display the diversity of the model, while a large value makes the model predictions more conservative but potentially more accurate.",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with col_slider2:
|
| 206 |
+
num_samples = st.number_input(
|
| 207 |
+
"π² Number of samples",
|
| 208 |
+
min_value=1,
|
| 209 |
+
max_value=5000,
|
| 210 |
+
value=1000,
|
| 211 |
+
step=1,
|
| 212 |
+
help="Number of location predictions to generate. More samples give better coverage but take longer to compute.",
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
st.markdown("### πΈ Choose your image")
|
| 216 |
+
tab1, tab2, tab3 = st.tabs(["Upload", "URL", "Examples"])
|
| 217 |
+
|
| 218 |
+
with tab1:
|
| 219 |
+
uploaded_file = st.file_uploader(
|
| 220 |
+
"Choose an image...",
|
| 221 |
+
type=["png", "jpg", "jpeg"],
|
| 222 |
+
help="Supported formats: PNG, JPG, JPEG",
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
if uploaded_file is not None:
|
| 226 |
+
st.markdown('<div class="upload-container">', unsafe_allow_html=True)
|
| 227 |
+
original_image = Image.open(uploaded_file)
|
| 228 |
+
display_image = resize_image_for_display(
|
| 229 |
+
original_image.copy(), max_size=300
|
| 230 |
+
)
|
| 231 |
+
st.image(
|
| 232 |
+
display_image, caption="Uploaded Image", use_container_width=True
|
| 233 |
+
)
|
| 234 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 235 |
+
|
| 236 |
+
if st.button("π Predict Location", key="predict_upload"):
|
| 237 |
+
with st.spinner("π Analyzing image and predicting locations..."):
|
| 238 |
+
predictions = predict_location(
|
| 239 |
+
original_image,
|
| 240 |
+
model_name=model_name,
|
| 241 |
+
cfg=cfg_value,
|
| 242 |
+
num_samples=num_samples,
|
| 243 |
+
)
|
| 244 |
+
st.session_state["predictions"] = predictions
|
| 245 |
+
|
| 246 |
+
with tab2:
|
| 247 |
+
url = st.text_input("Enter image URL:", key="image_url")
|
| 248 |
+
|
| 249 |
+
if url:
|
| 250 |
+
image = load_image_from_url(url)
|
| 251 |
+
if image:
|
| 252 |
+
st.markdown(
|
| 253 |
+
'<div class="upload-container">', unsafe_allow_html=True
|
| 254 |
+
)
|
| 255 |
+
display_image = resize_image_for_display(image.copy(), max_size=300)
|
| 256 |
+
st.image(
|
| 257 |
+
display_image,
|
| 258 |
+
caption="Image from URL",
|
| 259 |
+
use_container_width=True,
|
| 260 |
+
)
|
| 261 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 262 |
+
|
| 263 |
+
if st.button("π Predict Location", key="predict_url"):
|
| 264 |
+
with st.spinner(
|
| 265 |
+
"π Analyzing image and predicting locations..."
|
| 266 |
+
):
|
| 267 |
+
predictions = predict_location(
|
| 268 |
+
image,
|
| 269 |
+
model_name=model_name,
|
| 270 |
+
cfg=cfg_value,
|
| 271 |
+
num_samples=num_samples,
|
| 272 |
+
)
|
| 273 |
+
st.session_state["predictions"] = predictions
|
| 274 |
+
|
| 275 |
+
with tab3:
|
| 276 |
+
examples = load_example_images()
|
| 277 |
+
st.markdown('<div class="examples-container">', unsafe_allow_html=True)
|
| 278 |
+
example_cols = st.columns(len(examples))
|
| 279 |
+
|
| 280 |
+
for idx, (name, path) in enumerate(examples.items()):
|
| 281 |
+
with example_cols[idx]:
|
| 282 |
+
original_image = Image.open(path)
|
| 283 |
+
display_image = resize_image_for_display(
|
| 284 |
+
original_image.copy(), max_size=150
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
if st.container().button(
|
| 288 |
+
"πΈ",
|
| 289 |
+
key=f"img_{name}",
|
| 290 |
+
help=f"Click to predict location for {name}",
|
| 291 |
+
use_container_width=True,
|
| 292 |
+
):
|
| 293 |
+
with st.spinner(
|
| 294 |
+
"π Analyzing image and predicting locations..."
|
| 295 |
+
):
|
| 296 |
+
predictions = predict_location(
|
| 297 |
+
original_image,
|
| 298 |
+
model_name=model_name,
|
| 299 |
+
cfg=cfg_value,
|
| 300 |
+
num_samples=num_samples,
|
| 301 |
+
)
|
| 302 |
+
st.session_state["predictions"] = predictions
|
| 303 |
+
st.rerun()
|
| 304 |
+
|
| 305 |
+
st.image(display_image, caption=name, use_container_width=True)
|
| 306 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 307 |
+
|
| 308 |
+
with col2:
|
| 309 |
+
st.markdown("### π Predicted Locations")
|
| 310 |
+
|
| 311 |
+
if "predictions" in st.session_state:
|
| 312 |
+
pred = st.session_state["predictions"]
|
| 313 |
+
|
| 314 |
+
# Create DataFrame for all predictions
|
| 315 |
+
df = pd.DataFrame(
|
| 316 |
+
{
|
| 317 |
+
"lat": pred["lat"],
|
| 318 |
+
"lon": pred["lon"],
|
| 319 |
+
"type": ["Sample"] * len(pred["lat"]),
|
| 320 |
+
}
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Add high-confidence prediction
|
| 324 |
+
df = pd.concat(
|
| 325 |
+
[
|
| 326 |
+
df,
|
| 327 |
+
pd.DataFrame(
|
| 328 |
+
{
|
| 329 |
+
"lat": [pred["high_conf_lat"]],
|
| 330 |
+
"lon": [pred["high_conf_lon"]],
|
| 331 |
+
"type": ["Best Guess"],
|
| 332 |
+
}
|
| 333 |
+
),
|
| 334 |
+
]
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Create a more interactive map using Plotly
|
| 338 |
+
fig = px.scatter_mapbox(
|
| 339 |
+
df,
|
| 340 |
+
lat="lat",
|
| 341 |
+
lon="lon",
|
| 342 |
+
zoom=2,
|
| 343 |
+
opacity=0.6,
|
| 344 |
+
color="type",
|
| 345 |
+
color_discrete_map={"Sample": "blue", "Best Guess": "red"},
|
| 346 |
+
mapbox_style="carto-positron",
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
fig.update_traces(selector=dict(name="Best Guess"), marker_size=15)
|
| 350 |
+
|
| 351 |
+
fig.update_layout(
|
| 352 |
+
margin={"r": 0, "t": 0, "l": 0, "b": 0},
|
| 353 |
+
height=500,
|
| 354 |
+
showlegend=True,
|
| 355 |
+
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Display map in a container
|
| 359 |
+
with st.container():
|
| 360 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 361 |
+
|
| 362 |
+
# Display stats in a styled container
|
| 363 |
+
with st.container():
|
| 364 |
+
st.markdown(
|
| 365 |
+
f"""
|
| 366 |
+
<div class="prediction-box">
|
| 367 |
+
<h4>π Prediction Statistics</h4>
|
| 368 |
+
<p>Number of sampled locations: {len(pred["lat"])}</p>
|
| 369 |
+
<p>Best guess location: {pred["high_conf_lat"]:.2f}Β°, {pred["high_conf_lon"]:.2f}Β°</p>
|
| 370 |
+
</div>
|
| 371 |
+
""",
|
| 372 |
+
unsafe_allow_html=True,
|
| 373 |
+
)
|
| 374 |
+
else:
|
| 375 |
+
# Empty state with better styling
|
| 376 |
+
st.markdown(
|
| 377 |
+
"""
|
| 378 |
+
<div class="prediction-box" style="text-align: center;">
|
| 379 |
+
<h4>π Upload an image and click 'Predict Location'</h4>
|
| 380 |
+
<p>The predicted locations will appear here on an interactive map.</p>
|
| 381 |
+
</div>
|
| 382 |
+
""",
|
| 383 |
+
unsafe_allow_html=True,
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/nicolas-dufour/plonk.git@master
|
| 2 |
+
pandas
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
streamlit_extras
|
| 6 |
+
plotly
|