Spaces:
Build error
Build error
Create new file
Browse files- flair_recognizer.py +233 -0
flair_recognizer.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Optional, List, Tuple, Set
|
| 3 |
+
|
| 4 |
+
from presidio_analyzer import (
|
| 5 |
+
RecognizerResult,
|
| 6 |
+
EntityRecognizer,
|
| 7 |
+
AnalysisExplanation,
|
| 8 |
+
)
|
| 9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from flair.data import Sentence
|
| 13 |
+
from flair.models import SequenceTagger
|
| 14 |
+
except ImportError:
|
| 15 |
+
print("Flair is not installed")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger("presidio-analyzer")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class FlairRecognizer(EntityRecognizer):
|
| 22 |
+
"""
|
| 23 |
+
Wrapper for a flair model, if needed to be used within Presidio Analyzer.
|
| 24 |
+
:example:
|
| 25 |
+
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
| 26 |
+
>flair_recognizer = FlairRecognizer()
|
| 27 |
+
>registry = RecognizerRegistry()
|
| 28 |
+
>registry.add_recognizer(flair_recognizer)
|
| 29 |
+
>analyzer = AnalyzerEngine(registry=registry)
|
| 30 |
+
>results = analyzer.analyze(
|
| 31 |
+
> "My name is Christopher and I live in Irbid.",
|
| 32 |
+
> language="en",
|
| 33 |
+
> return_decision_process=True,
|
| 34 |
+
>)
|
| 35 |
+
>for result in results:
|
| 36 |
+
> print(result)
|
| 37 |
+
> print(result.analysis_explanation)
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
ENTITIES = [
|
| 41 |
+
"LOCATION",
|
| 42 |
+
"PERSON",
|
| 43 |
+
"NRP",
|
| 44 |
+
"GPE",
|
| 45 |
+
"ORGANIZATION",
|
| 46 |
+
"MAC_ADDRESS",
|
| 47 |
+
"US_BANK_NUMBER",
|
| 48 |
+
"IMEI",
|
| 49 |
+
"TITLE",
|
| 50 |
+
"LICENSE_PLATE",
|
| 51 |
+
"US_PASSPORT",
|
| 52 |
+
"CURRENCY",
|
| 53 |
+
"ROUTING_NUMBER",
|
| 54 |
+
"US_ITIN",
|
| 55 |
+
"US_BANK_NUMBER",
|
| 56 |
+
"US_DRIVER_LICENSE",
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
|
| 60 |
+
|
| 61 |
+
CHECK_LABEL_GROUPS = [
|
| 62 |
+
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}),
|
| 63 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
| 64 |
+
({"NRP"}, {"NORP", "NRP"}),
|
| 65 |
+
({"GPE"}, {"GPE"}),
|
| 66 |
+
({"ORGANIZATION"}, {"ORG"}),
|
| 67 |
+
({"MAC_ADDRESS"}, {"MAC_ADDRESS"}),
|
| 68 |
+
({"US_BANK_NUMBER"}, {"US_BANK_NUMBER"}),
|
| 69 |
+
({"IMEI"}, {"IMEI"}),
|
| 70 |
+
({"TITLE"}, {"TITLE"}),
|
| 71 |
+
({"LICENSE_PLATE"}, {"LICENSE_PLATE"}),
|
| 72 |
+
({"US_PASSPORT"}, {"US_PASSPORT"}),
|
| 73 |
+
({"CURRENCY"}, {"CURRENCY"}),
|
| 74 |
+
({"ROUTING_NUMBER"}, {"ROUTING_NUMBER"}),
|
| 75 |
+
# ({"US_ITIN"}, {"US_ITIN"}),
|
| 76 |
+
# ({"US_BANK_NUMBER"}, {"US_BANK_NUMBER"}),
|
| 77 |
+
# ({"US_DRIVER_LICENSE"}, {"US_DRIVER_LICENSE"}),
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
MODEL_LANGUAGES = {
|
| 81 |
+
"en": "beki/flair-ner-debug-english",
|
| 82 |
+
# "es": "flair/ner-spanish-large",
|
| 83 |
+
# "de": "flair/ner-german-large",
|
| 84 |
+
# "nl": "flair/ner-dutch-large",
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
PRESIDIO_EQUIVALENCES = {
|
| 88 |
+
"PER": "PERSON",
|
| 89 |
+
"LOC": "LOCATION",
|
| 90 |
+
"ORG": "ORGANIZATION",
|
| 91 |
+
# 'MISC': 'MISCELLANEOUS' # - Probably not PII
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
supported_language: str = "en",
|
| 97 |
+
supported_entities: Optional[List[str]] = None,
|
| 98 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
| 99 |
+
model: SequenceTagger = None,
|
| 100 |
+
):
|
| 101 |
+
self.check_label_groups = (
|
| 102 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
| 106 |
+
self.model = (
|
| 107 |
+
model
|
| 108 |
+
if model
|
| 109 |
+
else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
super().__init__(
|
| 113 |
+
supported_entities=supported_entities,
|
| 114 |
+
supported_language=supported_language,
|
| 115 |
+
name="Flair Analytics",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
def load(self) -> None:
|
| 119 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
| 120 |
+
pass
|
| 121 |
+
|
| 122 |
+
def get_supported_entities(self) -> List[str]:
|
| 123 |
+
"""
|
| 124 |
+
Return supported entities by this model.
|
| 125 |
+
:return: List of the supported entities.
|
| 126 |
+
"""
|
| 127 |
+
return self.supported_entities
|
| 128 |
+
|
| 129 |
+
# Class to use Flair with Presidio as an external recognizer.
|
| 130 |
+
def analyze(
|
| 131 |
+
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
|
| 132 |
+
) -> List[RecognizerResult]:
|
| 133 |
+
"""
|
| 134 |
+
Analyze text using Text Analytics.
|
| 135 |
+
:param text: The text for analysis.
|
| 136 |
+
:param entities: Not working properly for this recognizer.
|
| 137 |
+
:param nlp_artifacts: Not used by this recognizer.
|
| 138 |
+
:param language: Text language. Supported languages in MODEL_LANGUAGES
|
| 139 |
+
:return: The list of Presidio RecognizerResult constructed from the recognized
|
| 140 |
+
Flair detections.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
results = []
|
| 144 |
+
|
| 145 |
+
sentences = Sentence(text)
|
| 146 |
+
self.model.predict(sentences)
|
| 147 |
+
|
| 148 |
+
# If there are no specific list of entities, we will look for all of it.
|
| 149 |
+
if not entities:
|
| 150 |
+
entities = self.supported_entities
|
| 151 |
+
|
| 152 |
+
for entity in entities:
|
| 153 |
+
if entity not in self.supported_entities:
|
| 154 |
+
continue
|
| 155 |
+
|
| 156 |
+
for ent in sentences.get_spans("ner"):
|
| 157 |
+
if not self.__check_label(
|
| 158 |
+
entity, ent.labels[0].value, self.check_label_groups
|
| 159 |
+
):
|
| 160 |
+
continue
|
| 161 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
| 162 |
+
ent.labels[0].value
|
| 163 |
+
)
|
| 164 |
+
explanation = self.build_flair_explanation(
|
| 165 |
+
round(ent.score, 2), textual_explanation
|
| 166 |
+
)
|
| 167 |
+
flair_result = self._convert_to_recognizer_result(ent, explanation)
|
| 168 |
+
|
| 169 |
+
results.append(flair_result)
|
| 170 |
+
|
| 171 |
+
return results
|
| 172 |
+
|
| 173 |
+
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
|
| 174 |
+
|
| 175 |
+
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
|
| 176 |
+
flair_score = round(entity.score, 2)
|
| 177 |
+
|
| 178 |
+
flair_results = RecognizerResult(
|
| 179 |
+
entity_type=entity_type,
|
| 180 |
+
start=entity.start_position,
|
| 181 |
+
end=entity.end_position,
|
| 182 |
+
score=flair_score,
|
| 183 |
+
analysis_explanation=explanation,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
return flair_results
|
| 187 |
+
|
| 188 |
+
def build_flair_explanation(
|
| 189 |
+
self, original_score: float, explanation: str
|
| 190 |
+
) -> AnalysisExplanation:
|
| 191 |
+
"""
|
| 192 |
+
Create explanation for why this result was detected.
|
| 193 |
+
:param original_score: Score given by this recognizer
|
| 194 |
+
:param explanation: Explanation string
|
| 195 |
+
:return:
|
| 196 |
+
"""
|
| 197 |
+
explanation = AnalysisExplanation(
|
| 198 |
+
recognizer=self.__class__.__name__,
|
| 199 |
+
original_score=original_score,
|
| 200 |
+
textual_explanation=explanation,
|
| 201 |
+
)
|
| 202 |
+
return explanation
|
| 203 |
+
|
| 204 |
+
@staticmethod
|
| 205 |
+
def __check_label(
|
| 206 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
| 207 |
+
) -> bool:
|
| 208 |
+
return any(
|
| 209 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
if __name__ == "__main__":
|
| 214 |
+
|
| 215 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
| 216 |
+
|
| 217 |
+
flair_recognizer = (
|
| 218 |
+
FlairRecognizer()
|
| 219 |
+
) # This would download a very large (+2GB) model on the first run
|
| 220 |
+
|
| 221 |
+
registry = RecognizerRegistry()
|
| 222 |
+
registry.add_recognizer(flair_recognizer)
|
| 223 |
+
|
| 224 |
+
analyzer = AnalyzerEngine(registry=registry)
|
| 225 |
+
|
| 226 |
+
results = analyzer.analyze(
|
| 227 |
+
"{first_name: Moustafa, sale_id: 235234}",
|
| 228 |
+
language="en",
|
| 229 |
+
return_decision_process=True,
|
| 230 |
+
)
|
| 231 |
+
for result in results:
|
| 232 |
+
print(result)
|
| 233 |
+
print(result.analysis_explanation)
|