Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Streamlit app for Presidio."""
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from json import JSONEncoder
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
| 9 |
+
from presidio_anonymizer import AnonymizerEngine
|
| 10 |
+
|
| 11 |
+
from transformers_recognizer import TransformersRecognizer
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
import spacy
|
| 15 |
+
spacy.cli.download("en_core_web_lg")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Helper methods
|
| 19 |
+
@st.cache(allow_output_mutation=True)
|
| 20 |
+
def analyzer_engine():
|
| 21 |
+
"""Return AnalyzerEngine."""
|
| 22 |
+
|
| 23 |
+
transformers_recognizer = TransformersRecognizer()
|
| 24 |
+
|
| 25 |
+
registry = RecognizerRegistry()
|
| 26 |
+
registry.add_recognizer(transformers_recognizer)
|
| 27 |
+
registry.load_predefined_recognizers()
|
| 28 |
+
|
| 29 |
+
analyzer = AnalyzerEngine(registry=registry)
|
| 30 |
+
return analyzer
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@st.cache(allow_output_mutation=True)
|
| 34 |
+
def anonymizer_engine():
|
| 35 |
+
"""Return AnonymizerEngine."""
|
| 36 |
+
return AnonymizerEngine()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_supported_entities():
|
| 40 |
+
"""Return supported entities from the Analyzer Engine."""
|
| 41 |
+
return analyzer_engine().get_supported_entities()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def analyze(**kwargs):
|
| 45 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
| 46 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
| 47 |
+
kwargs["entities"] = None
|
| 48 |
+
return analyzer_engine().analyze(**kwargs)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def anonymize(text, analyze_results):
|
| 52 |
+
"""Anonymize identified input using Presidio Abonymizer."""
|
| 53 |
+
|
| 54 |
+
res = anonymizer_engine().anonymize(text, analyze_results)
|
| 55 |
+
return res.text
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
st.set_page_config(page_title="Presidio demo (English)", layout="wide")
|
| 59 |
+
|
| 60 |
+
# Side bar
|
| 61 |
+
st.sidebar.markdown(
|
| 62 |
+
"""
|
| 63 |
+
Anonymize PII entities with [presidio](https://aka.ms/presidio), spaCy and a [PHI detection Roberta model](https://huggingface.co/obi/deid_roberta_i2b2).
|
| 64 |
+
"""
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
st_entities = st.sidebar.multiselect(
|
| 68 |
+
label="Which entities to look for?",
|
| 69 |
+
options=get_supported_entities(),
|
| 70 |
+
default=list(get_supported_entities()),
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
st_threhsold = st.sidebar.slider(
|
| 74 |
+
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
st_return_decision_process = st.sidebar.checkbox("Add analysis explanations in json")
|
| 78 |
+
|
| 79 |
+
st.sidebar.info(
|
| 80 |
+
"Presidio is an open source framework for PII detection and anonymization. "
|
| 81 |
+
"For more info visit [aka.ms/presidio](https://aka.ms/presidio)"
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Main panel
|
| 86 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
| 87 |
+
engine = analyzer_engine()
|
| 88 |
+
analyzer_load_state.empty()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# Create two columns for before and after
|
| 92 |
+
col1, col2 = st.columns(2)
|
| 93 |
+
|
| 94 |
+
# Before:
|
| 95 |
+
col1.subheader("Input string:")
|
| 96 |
+
st_text = col1.text_area(
|
| 97 |
+
label="Enter text",
|
| 98 |
+
value="Type in some text, "
|
| 99 |
+
"like a phone number (212-141-4544) "
|
| 100 |
+
"or a name (Lebron James).",
|
| 101 |
+
height=400,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# After
|
| 105 |
+
col2.subheader("Output:")
|
| 106 |
+
|
| 107 |
+
st_analyze_results = analyze(
|
| 108 |
+
text=st_text,
|
| 109 |
+
entities=st_entities,
|
| 110 |
+
language="en",
|
| 111 |
+
score_threshold=st_threhsold,
|
| 112 |
+
return_decision_process=st_return_decision_process,
|
| 113 |
+
)
|
| 114 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
| 115 |
+
col2.text_area(label="", value=st_anonymize_results, height=400)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# table result
|
| 119 |
+
st.subheader("Findings")
|
| 120 |
+
if st_analyze_results:
|
| 121 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
| 122 |
+
df = df[["entity_type", "start", "end", "score"]].rename(
|
| 123 |
+
{
|
| 124 |
+
"entity_type": "Entity type",
|
| 125 |
+
"start": "Start",
|
| 126 |
+
"end": "End",
|
| 127 |
+
"score": "Confidence",
|
| 128 |
+
},
|
| 129 |
+
axis=1,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
st.dataframe(df, width=1000)
|
| 133 |
+
else:
|
| 134 |
+
st.text("No findings")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# json result
|
| 138 |
+
class ToDictListEncoder(JSONEncoder):
|
| 139 |
+
"""Encode dict to json."""
|
| 140 |
+
|
| 141 |
+
def default(self, o):
|
| 142 |
+
"""Encode to JSON using to_dict."""
|
| 143 |
+
if o:
|
| 144 |
+
return o.to_dict()
|
| 145 |
+
return []
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
if st_return_decision_process:
|
| 149 |
+
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))
|