Baptiste Canton
commited on
Commit
·
15f2286
1
Parent(s):
3825bf0
pit
Browse files
app.py
CHANGED
|
@@ -1,40 +1,73 @@
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import os
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
from pillow_heif import register_heif_opener
|
| 6 |
-
|
| 7 |
-
register_heif_opener()
|
| 8 |
-
|
| 9 |
-
import gradio as gr
|
| 10 |
from transformers import pipeline
|
| 11 |
|
|
|
|
| 12 |
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
| 13 |
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 200))
|
| 14 |
# https://huggingface.co/models?pipeline_tag=image-to-text&sort=likes
|
| 15 |
MODEL = os.getenv("MODEL", "Salesforce/blip-image-captioning-large")
|
| 16 |
|
|
|
|
|
|
|
| 17 |
logging.basicConfig(level=LOG_LEVEL)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
)
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
-
def graptioner(
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import io
|
| 3 |
import logging
|
| 4 |
import os
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
+
import requests
|
| 8 |
+
from PIL import Image
|
| 9 |
from pillow_heif import register_heif_opener
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from transformers import pipeline
|
| 11 |
|
| 12 |
+
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 13 |
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
| 14 |
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 200))
|
| 15 |
# https://huggingface.co/models?pipeline_tag=image-to-text&sort=likes
|
| 16 |
MODEL = os.getenv("MODEL", "Salesforce/blip-image-captioning-large")
|
| 17 |
|
| 18 |
+
register_heif_opener()
|
| 19 |
+
|
| 20 |
logging.basicConfig(level=LOG_LEVEL)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
|
| 24 |
+
def setup_args():
|
| 25 |
+
parser = argparse.ArgumentParser()
|
| 26 |
+
parser.add_argument("--share", action="store_true", default=False)
|
| 27 |
+
return parser.parse_args()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def load_image_from_url(url):
|
| 31 |
+
try:
|
| 32 |
+
response = requests.get(url)
|
| 33 |
+
if not response.ok:
|
| 34 |
+
raise Exception("Error downloading image")
|
| 35 |
+
image = Image.open(io.BytesIO(response.content))
|
| 36 |
+
return image
|
| 37 |
+
except Exception as e:
|
| 38 |
+
logger.error("Error loading image from URL: %s", e)
|
| 39 |
+
raise
|
| 40 |
|
| 41 |
|
| 42 |
+
def graptioner(image, url):
|
| 43 |
+
if url and url.strip():
|
| 44 |
+
image = load_image_from_url(url)
|
| 45 |
+
width, height = image.size
|
| 46 |
+
if width < 1 or height < 1:
|
| 47 |
+
raise Exception("Invalid image")
|
| 48 |
+
logger.debug("Loaded image size: %sx%s", width, height)
|
| 49 |
+
# generate caption
|
| 50 |
+
result = captioner(image)
|
| 51 |
+
return result[0]["generated_text"]
|
| 52 |
|
| 53 |
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
args = setup_args()
|
| 56 |
+
logger.info("Loading model...")
|
| 57 |
+
# simpler model: "ydshieh/vit-gpt2-coco-en"
|
| 58 |
+
captioner = pipeline(
|
| 59 |
+
"image-to-text",
|
| 60 |
+
model=MODEL,
|
| 61 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 62 |
+
)
|
| 63 |
+
logger.info("Done loading model.")
|
| 64 |
+
iface = gr.Interface(
|
| 65 |
+
fn=graptioner,
|
| 66 |
+
inputs=[
|
| 67 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 68 |
+
gr.Textbox(lines=1, placeholder="Image URL", label="Image URL"),
|
| 69 |
+
],
|
| 70 |
+
outputs=["text"],
|
| 71 |
+
allow_flagging="never",
|
| 72 |
+
)
|
| 73 |
+
iface.launch(share=args.share)
|
app3.py
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import io
|
| 3 |
-
import logging
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
import gradio as gr
|
| 7 |
-
import requests
|
| 8 |
-
from PIL import Image
|
| 9 |
-
from pillow_heif import register_heif_opener
|
| 10 |
-
from transformers import pipeline
|
| 11 |
-
|
| 12 |
-
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 13 |
-
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
| 14 |
-
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 200))
|
| 15 |
-
# https://huggingface.co/models?pipeline_tag=image-to-text&sort=likes
|
| 16 |
-
MODEL = os.getenv("MODEL", "Salesforce/blip-image-captioning-large")
|
| 17 |
-
|
| 18 |
-
register_heif_opener()
|
| 19 |
-
|
| 20 |
-
logging.basicConfig(level=LOG_LEVEL)
|
| 21 |
-
logger = logging.getLogger(__name__)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def setup_args():
|
| 25 |
-
parser = argparse.ArgumentParser()
|
| 26 |
-
parser.add_argument("--share", action="store_true", default=False)
|
| 27 |
-
return parser.parse_args()
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def load_image_from_url(url):
|
| 31 |
-
try:
|
| 32 |
-
response = requests.get(url)
|
| 33 |
-
if not response.ok:
|
| 34 |
-
raise Exception("Error downloading image")
|
| 35 |
-
image = Image.open(io.BytesIO(response.content))
|
| 36 |
-
return image
|
| 37 |
-
except Exception as e:
|
| 38 |
-
logger.error("Error loading image from URL: %s", e)
|
| 39 |
-
raise
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def graptioner(image, url):
|
| 43 |
-
if url and url.strip():
|
| 44 |
-
image = load_image_from_url(url)
|
| 45 |
-
width, height = image.size
|
| 46 |
-
if width < 1 or height < 1:
|
| 47 |
-
raise Exception("Invalid image")
|
| 48 |
-
logger.debug("Loaded image size: %sx%s", width, height)
|
| 49 |
-
# generate caption
|
| 50 |
-
result = captioner(image)
|
| 51 |
-
return result[0]["generated_text"]
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
if __name__ == "__main__":
|
| 55 |
-
args = setup_args()
|
| 56 |
-
logger.info("Loading model...")
|
| 57 |
-
# simpler model: "ydshieh/vit-gpt2-coco-en"
|
| 58 |
-
captioner = pipeline(
|
| 59 |
-
"image-to-text",
|
| 60 |
-
model=MODEL,
|
| 61 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 62 |
-
)
|
| 63 |
-
logger.info("Done loading model.")
|
| 64 |
-
iface = gr.Interface(
|
| 65 |
-
fn=graptioner,
|
| 66 |
-
inputs=[
|
| 67 |
-
gr.Image(type="pil", label="Upload Image"),
|
| 68 |
-
gr.Textbox(lines=1, placeholder="Image URL", label="Image URL"),
|
| 69 |
-
],
|
| 70 |
-
outputs=["text"],
|
| 71 |
-
)
|
| 72 |
-
iface.launch(share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|